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Abstract

This documents contain the class notes, which is more or less similar to the lectures given in person
at Universidad EAFIT. The homework is taken directly from these: I propose some exercises here. I will
not hand out a different file. Homework is pivotal to this course: it gives you grade and helps you prepare
for exam. I recommend using the R programming language (R Core Team, 2021) (mostly because there
are already many libraries out there in the CRAN which implements a lot of methods for FDA), but you
are free to use whatever language you want to implement the practical exercises/homework. For Python,
there is a package called scikit-fda, which is kinda recent and has many functionalities, but it is not as
mature as the fda ecosystem in R. You can contact me at acalles@eafit.edu.co if you have any inquiries.
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At the end of each subsection I propose some suggested readings if the material here/in class was not
clear enough or you want to learn more about some specific topic.

1 Introduction

1.1 Academic Pact
• Come to class whenever possible, I believe the best way to learn in a graduate class is through

discussion with your peers, and class is a great place to do that. However you can also study
with this document. An ideal scenario is to attend the lectures, then read the document, then
do the exercises. We will only have four in person classes, they will be online from then on. My
recommended method of attending this class is the following: each week I will tell you, more or
less, what I plan on teaching next week. Read up a bit on that, nothing too deep. Then, attend
the lecture, ask questions based on your reading or on the class itself. Then, read carefully the
topics on this document that correspond to that week of lectures before next class, and try doing
the exercises. At the start of each lecture, there will be a brief discussion about exercises.

• This document will contain exercises that must be completed.

• – One project (50%): read two papers carefully with the same methodology (e.g. two papers
on clustering for functional dataset), simulate some data and compare performances of both
methods and apply both methods to a real dataset. The idea is that you will hand a document
which summarized both papers and present your findings, and that you will present results to
your peers in class.

– Do the exercises in these notes (50%). This will be graded at the end of the course, however,
I STRONGLY recommend doing them as you read them. Not necessarily you will be able to
complete them in the first go, but you will be refining them as you learn more.

• Grading dates: To be discussed.

• Second grader: To request a second grader, you must follow this process.:

1. Request the grader when the feedback for that note is done.
2. In writing, to the teacher, in the next 3 business days following the feedback, present the request

with a clear justification. The teacher has 5 business day to escalate the request accordingly.
3. The exam will be in hands of the professor until the request is resolved.

• Bibliography: The course will mainly follow the text by Ramsay et al. (2005) and Ramsay et al.
(2009) in applied aspects, and the text by Horváth and Kokoszka (2012) for a more theoretical look.
See (Cuevas, 2014; Wang et al., 2016) for fairly recent overviews of the area.

• Please send typos/errors for this document acalles@eafit.edu.co.

• I’ll upload the scripts I use throughout this document or in class to Interactiva.

2 A personal account of Functional Data Analysis
Functional data analysis (FDA) is an area of statistics of important current development, where the data
are functions. The FDA concept was coined by Ramsay (1982), but some methods are older and date back
to the 50s (Grenander, 1950; Rao, 1958). With the advance of technology, continuously recorded data have
become more common, and thus interest in FDA has spiked, particularly in times of big data and data
science (Aykroyd et al., 2019). In the FDA context, we consider that certain functions originated the data
that we record discretely, and that those functions are the sample members, not the explicit discrete data.

So what does a typical FDA dataset looks like? A classic example is the Berkeley Growth data, which
records height data for some individuals across time. See Figure 1 to visualize the dataset. These data has
some interesting features: we have two groups (males vs females) we can compare, the data is observed in
irregular intervals in time (observations are more frequent at earlier ages), and we have sufficiently smooth
data so we can explore things like derivatives of the data.

In FDA we can do many of the same stuff we can do in statistics: We can estimate means and covariances
(and do inferences about those estimated objects) (Yao et al., 2005a), regression models (Yao et al., 2005b),
clustering (Li and Chiou, 2011), classification (James and Hastie, 2001), time series (Panaretos and Tavakoli,
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Figure 1: Berkeley growth data

2013), etc. If you can think of an area or general methodology in statistics, probably that is also generalized
for functional data and you can find a few articles on it. If you can’t find any articles, congratulations! You
have an area of research to work on.

2.1 Motivation: Applications
FDA has been applied in many areas, and it is applied to more and more varied areas. Here I will summarize
some of the findings of Ullah and Finch (2013), where they do a systematic review of applications of FDA
in varied disciplines. Note that the paper is from 2013 (and only includes papers up to 2010), that means it
is getting kind of old in this hugely saturated academic world. They found 84 applications of FDA, mostly
from 2005 until 2010, roughly relating to the following areas:

• Biomedicine (18 papers): For example, Wu and Müller (2010) treats DNA microarray data (which is
high dimensional, and in many cases, n << p) as a functional data object, i.e. they embed the data in
functions instead of treating it as multivariate. This is followed by a functional logistic regression on
those functions in order to classify gene expressions from DNA microarrays.

• Biomechanics (11 papers): For example, Durá Gil et al. (2010) compares functional and nonfunctional
regression for measuring the effect of walking velocity on force platforms. They conclude that functional
regression is less restrictive and more informative for this kind of data.

• Medicine (10 papers): For example, Erbas et al. (2010) uses FDA techniques to model and predict
mortality rates by age in breast cancer patients.

• Linguistics (6 papers): For example, Lucero (1999) uses FDA techniques to study the acoustic compo-
nents of voice signals, such as harmonics to noise ratio.

• Biology (4 papers): For example, Müller et al. (2009) studies temporal fertility trajectories of flies, and
uses FDA to conclude that flies from the same species and different geographic locations have different
temporal trajectories.

• Ecology (4 papers): For example, Henderson (2006) uses functional principal component analysis,
functional linear models and functional cluster to monitor water quality across different sites.

• Psychology (4 papers): For example. Chapados and Levitin (2008) uses FDA to investigate physiolog-
ical interactions in the listening of music. Interesting bit: James O. Ramsay, considered the father of
FDA (with Bernard Silverman), was trained in Psychology. He did not receive much formal training
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on math/statistics in his undergraduate years, thinking it was uninteresting and trivial, preferring to
pursue areas such as literature and philosophy instead. While in Grad School for psychology he became
greatly interested in statistics and the rest is history.

• Meteorology (4 papers): For example, Lee et al. (2009) uses FDA techniques to investigate how web
surfing data might explain how well did certain locations respond to the risk of Huricane Katrina.

• Environmental studies (4 papers): For example, Torres et al. (2011) uses an outlier detection technique
for gas emission data on the city of Oviedo, Spain. Detecting outliers here is interesting because
abnormal gas emissions might be of concern for public health.

• Demography (3 papers): For example, Hyndman and Shang (2010) uses generalization of boxplots to
functional data analysis applied to mortality rates. This paper is really cool! Very nice visualization
tool, very useful, and very theoretically sound. The application to mortality rates almost feel like an
afterthought, this tool works for mostly any functional dataset. It has its own easily usable R package,
which computes truly beautiful graphs. They use French mortality graphs to detect outlying mortality
curves for a given year. The outlying years were 1914 − 1919, 1940 and 1943 − 1944. What do those
years correspond to?

Exercise 1. This paper is uses French male mortality curves from 1899 to 2005. An interesting
exercise is to extend this analysis, at least, until 2020 and possibly 2021. Postpone doing this exercise
until you are a bit more comfortable with handling functional data on R. Use data from mortality
curves on Denmark (mortality. org ), which has data until 2021.

Exercise 2. Think that you have, as well as male mortality curves, some female mortality curves on
the same years. What would you do? What questions would you like to ask about the dataset of both
curves? What would happen if you aggregate mortalities?

Imagine that the data, instead of being functional, is multivariate. What methods from multivariate
statistics would you use, and what questions might those methods answer?

Answer this question in prose, no need for fancy math or computation. This is just a thought experi-
ment.

• Finance (3 papers): For example, Bapna et al. (2008) uses FDA techniques to study the dynamics of
prices in online auction markets. They study the first and second derivatives of the data, which would
not be possible without FDA!

• Neurology (2 papers): For example, Buckner et al. (2004) uses normalization techniques from FDA to
study brain images in demented patients.

• Economics (2 papers): For example, Ramsay and Ramsey (2002) consider differential equations esti-
mated from functional data to study the dynamics of production indexes in a 70 year span.

• Engineering (2 papers): For example, Dabo-Niang et al. (2007) consider modal curves, as well as other
central curves (median, mean) to propose a nonparametric clustering method for radar waveforms in
the Amazonian basin.

• Agriculture (1 paper): For example, Ogden et al. (2002) transform images of fields to functional data,
and uses that data to predict lodging score (a measure of how tilted a given crop is, if the crop is
more tilted then it might lead to lowered yields or diseases on the crop) for rice fields via functional
regression and functional principal component analysis.

• Physiology (1 paper): For example, Newell et al. (2006) uses FDA to compare lactate curves between
athletes. Lactate curves are a way to measure athlete performance.

• Information Technology (1 paper): For example, Stewart et al. (2006) study the dynamics of open
software evolution in the open source context. An interesting conclusion: software complexity tend to
decrease as software grows in size.
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• Education (1 paper): For example, Rupp (2005) clusters students taking a certain Mathematics and
Science standardized exam based on sociodemographic and attitudinal variables. Once the groups are
selected, curves for scores of groups are compared using functional principal components.

• Chemistry (1 paper): For example, Hutchinson et al. (2004) studies molecular weight distribution
data (different weight fraction is expressed as a function of chain length, hence FDA) with functional
regression models.

• Geophysics (1 paper): For example, Maslova et al. (2010) uses a functional regression model to test if
auroral substorms and euqtorial and mid-latitude currents interact in such a way that is statistically
significant.

• Behavioural science (1 paper): For example, Zhang et al. (2006) predicts fruit flies longevity using
their sexual signalling curves. They conclude that high sexual signaling predict extended lifespan!

There are also more novel applications on the same and other areas, of course. For example, Patil et al.
(2022) use functional principal components to reduce dimensionality of complex astrochemical data; our very
own Henry Laniado has a Nature article (Azcorra et al., 2018) which uses unsupervised outlier detection
techniques for finding influential users in social networks; your humble servant Calle-Saldarriaga et al. (2021)
use a novel homogeneity test procedure for chemical data; Claeskens et al. (2014) propose a depth measure
for multivariate functions and detect outliers on weather data; Zhang et al. (2016) study neural connectivity
using generalized functional linear models; Delicado et al. (2010) study spatial functional data and proposes
a functional Kriging method; Cuevas et al. (2004) proposes as ANOVA test for functional cardiology data;
Fraiman and Muniz (2001) proposes a robust mean for functional data and applies it to NASDAQ data.

Exercise 3. What is the topic of your thesis? Do a brief search of functional data applications on that
domain, and select a few papers. Read the abstract and try to summarize the important ideas of the abstract.
For example, let’s say you are applying machine learning to analyze marketing trends in your thesis. So you
do a quick search of functional data marketing and select some papers that interest you, and summarize their
abstracts. If you do not have a topic for your thesis yet, don’t worry. Just try to search for something you
are interested on.

2.2 List of people
A (very biased) hall of Fame of Functional data analysis:

• Hans-Georg Muller: From UC Davis Statistics department, an eminence of the field. Has published
on various applications (mostly for biological data), and many theoretical papers that have helped
advance the area.

• Jane-Ling Wang: Also from UC Davis statistics department, also publishes many biological/medical
applications of FDA, as well as sound theoretical papers. Publishes with Muller a lot. Head of UC
Davis’ research group on FDA.

• James O. Ramsay: From McGill University’s Pschology department. Coined the term Functional
Data Analysis, considered the father of the area (as well as Bernard Silverman). Publishes mostly
applications, but many times they are so novel that they require new methodological advances. Author
of many influentiall introductory textbooks on FDA.

• Bernard Silverman: Joint position at University of Bristol and Oxford. Publishes many interesting
theoretical papers, joint author of the most influential FDA book with Ramsay.

• Ricardo Fraiman: From Universidad de la República de Uruguay, centro de Matemáticas. Has pub-
lished many novel techniques for FDA, translating tools from multivariate data analysis to this novel
world.

• Antonio Cuevas: From Universidad autónoma de madrid. Publishes constantly with Fraiman, has
proposed many novel and widely used FDA techniques.
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• Peter Hall: From Australia National University/University of Melbourne/UC Davis. Sadly he passed
away in 2016. He is considered as one of the most influential and prolific statisticians of all time. His
research areas span martingales and rates of convergence, extremes, coverage processes, bootstrapping,
high dimensional data, deconvolution, and of course, functional data analysis. He has an staggering
606 publications.

Exercise 4. Peter Hall was so beloved and influential that he recieved not one, but two obituaries in
great statistical journals: (Müller, 2016) and (Robinson and Welsh, 2018). Check out both papers to
know more about his biography and interests. Pick two papers for functional data analysis, based on
whatever criteria you have, and read the abstracts. Write out the FDA methodology they use in those
papers.

• Frederic Ferraty (Toulouse University) and Philippe Vieu (Paul Sabatier university): Dynamic french
duo, they published the authorative book on nonparametric FDA methods. Very interesting theoretical
papers from both of them.

• Giles Hooker: From Cornell University, he researches FDA and machine learning, and bring many
interesting insights from ML that many classical statistician don’t normally consider.

• Stanislav Nagy: One for the future. Just started his academic career. From Karlova University. Has
just started publishing in 2015, but since then has made monstrous contributions for FDA.

Here in Colombia, FDA is still in its early infancy. I attended the 2019 Colombian symposium in statistics,
presenting a talk in FDA. Surprisingly, there was an FDA section, with like 8 or so talks. To be brutally
honest, the research was not very good (including mine). We have a lot to do in order to grow in this area.
The researcher with the most interesting work in FDA here is probably Ramón Giraldo, from Universidad
Nacional in Bogotá. Most specifically, in EAFIT, we have some people interested in FDA: Henry Laniado,
Francico Zuluaga, Nicolás Moreno, Santiago Ortiz, and me, Alejandro Calle Saldarriaga. Henry introduced
all to the area1 (me in 2017, and I have been amazed, confused and thrilled ever since) and it has been very
nice researching in this novel and strange terrain. We are just beginning to do cool stuff, and have already
some papers to show for it. More to come for sure! Sadly I will be leaving EAFIT shortly but I will for sure
be still in touch with my friends and colleagues here.

2.3 Why FDA?
This is a question I got asked last time I presented this course. I had an answer (mostly appropriate I
believe). But I don’t want to answer this question. I want to show you the answer of this question indirectly,
through the course.

Exercise 5. Why do people use FDA instead of lets say, high-dimensional statistics or time series analysis?
You are probably not in the capacity to answer this question right now. Try to answer it. You will refine
your answer as the course progresses.

2.4 Methods in FDA
Almost any method you find for multivariate data analysis could be found also on functional data analysis,
appropriately changed. A nice review of usual methodology used in FDA is presented in (Wang et al., 2016).
You can also check the CRAN Task View for functional data analysis to check what methodologies are
implemented in R (https://cran.r-project.org/web/views/FunctionalData.html).

Exercise 6. Check the abstract and the sections of (Wang et al., 2016). Which methods intrigue you? Which
would you want to learn? From the methods that interest you, pick two papers and try and summarize the
abstract.

End of Lecture 1 material.

1except Nicolás, he came to Colombia with knowledge of the area I believe
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3 Hands on FDA

3.1 Smoothness: Some mathematical considerations
We are concerned, primarily, with univariate smooth functions: functions with one variable, one response,
or more formally, functions f : R → R, that is, real valued functions. These are the main object we will
study in our course. However, that is not the only type of functional objects that can be considered.

¿Are all functions that arise in nature univariate? Of course not. For example, Górecki et al. (2018)
present some methods for FDA on the multivariate domain. They propose a framework in which each
individual is a country with the fourth following responses, which are indexed in time: GDP, Energy use,
CO2 emissions and population of urban agglomerations of more than 1 million as a percentage of the
population.

¿But are all univariate functions that arise in nature real valued? Of course not. For example Calhoun
and Adali (2012) propose that FMRI signals have a real and imaginary parts, and analyze them as such.

Other interesting functions can be of the type f : R → Z. For example, covid cases in different countries
per day. For example, (Kowal, 2019) uses integer-valued functional data for measles forecasting. But how
do smoothness looks like here?

¿And is R the only topological space where functions can live? In other words, ¿can we propose another
topological space, let’s call it T, such that we have smooth functions f : R → T, i.e., we measure something
trough time in that topological space? The answer is, of course, yes: manifold valued topological data
analysis. For example, Zhang and Saparbayeva (2022) considers functions f : R → S2, which have many
applications, see Figure 2 for examples of these kinds of functions.

Figure 2: Manifold valued functional data.

But what exactly is a smooth function? Intuitively, a smooth function in an interval is a function for
which you can compute derivatives in that interval. There are degrees of smoothness (in mathematics: there
are many differentiability class): the more you can derive it while arriving at continuous functions, the
smoother it is (or more precisely: it belongs to a higher differentiability class).

Definition. Let I ⊆ R be an interval. Let k ∈ Z, with k ≥ 0. Then the function is from the
differentiability class Ck if f ′, f ′′, . . . , f (k) exist and are continuous in I. The function is said to be of class
C∞ if it has derivatives of all orders in I that are continuous in I. If f is of class C∞ if is called smooth.
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Exercise 7. Let B : R → R with

B(x) =

{
exp

(
− 1

1−x2

)
if |x| < 1

0 otherwise

Prove that this function is of class C∞. Hint: Derivate two times, note the form of the derivatives. Note
also that the product of two smooth functions is smooth. You have to show that B′(−1) → 0 and B′(1) → 0,
and similar arguments for all higher derivatives.

3.2 Smoothing
Let’s return to the realm of statistics. The simplest dataset encountered in FDA is of the form

xn(tj,n) ∈ R; tj,n ∈ [T1, T2]; n = 1, 2, . . . N ; j = 1, . . . , Jn

This means that we have N curves, observed on a common interval [T1, T2], available at specific time
points, tj,n, which could be different for different curves. Let’s assume that the number of points per curve
is high: that might not be the case, but special care must be taken if it is not (Sparse FDA).

FDA studies, then, the set of curves

{Xn(t) : t ∈ [T1, T2], n = 1, . . . , N},

for which values exists at any t ∈ [T1, T2], which are smooth. So how do we go from the first representation
to the second?

We express the functional data by means of basis expansions:

Xn(t) ≈
K∑

k=1

cnkBk(t), 1 ≤ n ≤ N.

The basic intuition around this is that the smooth functions considered in a given sample share some
shape properties, so each one can be approximated as a linear combination of some basic shapes, Bm. If the
original points tj,n differ between individuals, the expansion put the curves into a common domain so that
they are easily comparable. In the R package fda there are many basis functions.

But let’s look at the problem more closely. Let’s say we have a function

X(t) ≈
K∑

k=1

ckBk(t) = c′B

where c′ is a vector of length K which contains the coefficients ck and B is a n × k matrix containing
the values Bk(tj).

We want X(t) to be as close as
∑K

k=1 ckBk(t) as possible, so an option is to minimize the sum of least
squares

SSE =

N∑
j=1

[yj −
K∑

k=1

ckBk(tj)]
2

This is just a classic least squares problem! If you remember the formula for the regression coefficients
in multiple linear regression, you should note that

ĉ = (B′B)−1B′y

and our fitted values are then

ŷ = Bĉ
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Note that this is an OLS procedure, with all its problems and assumptions, and if we don’t check those
assumptions correctly we will have all the problems we have while fitting OLS, so you must be careful with
this.

Exercise 8. Read section 4.2.2 in (Ramsay et al., 2005). Implement a weighted least squares fit for the
weather data we used in class, with the same number of base functions. Compute ŷUW (unweighted fitted
values), ŷW (weighted fitted values). Compare RMSE(y, ŷUW ) and RMSE(y, ŷUW ) for each curve. Report
means and standard deviations of these errors, conclude. Plot the two sets of smoothed curves.

3.3 Some common bases
Okay, now let’s get our hands dirty and actually work with some functional data. The first thing we will
do is smoothing, using the package fda (Ramsay et al., 2021) in R. Of course, you can work with whatever
language you like the most, but you’ll have to search for packages which do the things I do in R, or, shudders,
implement them yourself.

We then smooth functions by representing them as a sum in some base of functions, for example, the
base of monomials

1, x, x2, . . . , xk, . . .

These functions are not very useful for approximating functions, as the leading term tends to be of
much more magnitude than all the others. However, the Stone–Weierstrass theorem states that every
continuous function on a given interval can be approximated as closely as desired by a given polynomial.
Since polynomials are just linear combinations of monomials, that means we could approximate any function
using the monomial basis. But in practice, this does not converge quickly enough.

The Fourier base is

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), . . .

or it could also be expressed as

B1(t) = 1;B2r−1(t) = sin(rωt);B2r(t) = cos(rωt)

where ω determines the period, 2π
ω . Note that

d

dt
sinrωt = rωcosrωt

d

dt
cosrωt = −rωsinrωt

so if the original basis of X has the coefficients (c0, c1, c2, c3, . . . , cK) then the Fourier basis expansion of
X ′ has the coefficients (0, c1,−ωc2, 2ωc3,−2ωc4, . . . , ).

Exercise 9. Find the coefficients for the Fourier basis expansion of X ′′ and X ′′′ in terms of the Fourier
basis expansion coefficients of X.

The Fourier series is good for periodic data, which don’t have strong local features and are stable. Ideally,
the periodicity of the series should be reflected on the data.

Exercise 10. Two functions defined on the same interval I are orthogonal if

< x(t), y(t) >=

∫
I
x(t)y(t)dt

Let I = [−2π, 2π]. Prove that all the functions on the Fourier basis on I are orthogonal to every other
function in the Fourier Basis. That means that the Basis is an orthogonal basis on I.
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.
Another interesting basis is the B-spline basis. I won’t get into all the details of what is an spline, but I

will illustrate its concepts. Let’s say you have a sampled function, i.e., you have a set of points of the form
(x, y) which you want to approximate as a spline of order m. Let’s say that a ≤ x ≤ b. First, divide [a, b]
into knot points τ0, τ1, . . . , τL. Then, a spline is a series of piecewise polynomials of order m defined between
knots, which respect the values at the knots and possible some smoothness constraints at the knots.

A spline basis is then using a number of splines to approximate a given function. It is worth noting that a
linear combination of splines is still a spline, so we are essentially approximating sample members as splines.
The order m of the spline will tell us how many times we can differentiate it and still obtain informative
derivatives.

Another interesting question is how to obtain a suitable number of basis functions K. This is related to
the bias-variance decomposition of the MSE: if you select few basis functions, your approximation will be
very biased but with small variance. If you select many basis functions, your approximation will have very
little bias but a high variance. An interesting algorithm to choose the number of basis, via crossvalidation,
for a given curve is:

1. Leave out one observation (tj , Yj).

2. Fit the remaing data and get X̂−j(tj) for many k.

3. Choose k that minimizes CV (X) =
∑m

j=1(Yj − X̂
j
(tj))

2

Exercise 11. Implement the above algorithm. Run it for the precipitation dataset we considered in class.
Check the number K of selected basis functions for each curve. How variable is it? What is the mean,
median, mode? Draw an histogram. Conclude.

Now, an example. Let’s consider the Montreal daily temperature database, which consists on daily
measures of temperature for many years in the Canadian city. The unsmoothed data is plotted in Figure 3

Figure 3: Montreal daily weather, unsmoothed

Now, let’s use the package fda to smooth using a Fourier basis. The code I use is:

library(fda)

TempDaily <-t(MontrealTemp)
basis <- create.fourier.basis(c(1,365), 65)
range <- 1:365
basismat <- eval.basis(range, basis)
coefs <- lsfit(basismat, TempDaily,

10



intercept=FALSE)$coef

tempfd <- fd(coefs, basis)
plot(tempfd)
temp_mean <- mean.fd(tempfd)
lines(temp_mean, lwd=2.5, col=’red’)
temp_sd <- sd.fd(tempfd)
lines(temp_sd, lwd=2.5, col = ’cyan’)

The code, explained:

1. Load fda, load data.

2. Create a Fourier basis with 65 functions in the range (1, 365).

3. Evaluate the basis in the range to obtain matrix B.

4. Solve the least squares problem which gives us the coeffients of the basis, c′ = (B′B)−1B′y, where y
is the original data. This is done for each curve.

5. Create a fd object with the estimated coefficients and the defined basis.

6. Plot the smoothed data.

7. Estimate the mean function of the data and plot it.

8. Estimate the standard deviation of the data and plot it.

A helper function for doing some of the things we are doing here is the smooth.basis function. An
example of smoothing another dataset, using the b-spline basis is:

library(fda)
library(fda.usc)

data(tecator)

range <- tecator$absorp.fdata$argvals
y <- t(tecator$absorp.fdata$data)

splinebasis <- create.bspline.basis(tecator$absorp.fdata$rangeval, 15)

fd_data <- smooth.basis(range, y, splinebasis)

plot(fd_data)

Exercise 12. The tecator dataset has some other covariates. Separate the curves in two types of curves:
Curves which have a high fat percentage (tecator$y$Fat ≥ 20), plot them in the same plot but with different
colors. Can you note differences?

Exercise 13. One cool feature of functional data is that we can examine the derivatives of our functions.
Read the documentation for the deriv.fd function. Compute the first and second derivatives of the data
(after smoothing). Plot the derivatives for curves with low and high fat with different colors. Can you note
differences in the groups?

3.4 Bibliographic note
For an introduction to basis functions, you can read section 3 of (Ramsay et al., 2005). For an introduction
to smoothing you can read section 4 of (Ramsay et al., 2005). The Wikipedia page for smoothness (in the
mathematical sense) is a good introduction https://en.wikipedia.org/wiki/Smoothness. For a complete
introduction and implementation of B-splines refer to (d. Boor, 2001).

End of lecture 2.
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4 More exploratory tools

4.1 Some common statistics
Let’s assume now that we are using the fully functional representation of our objects, i.e., we have successfully
smoothed the data, which is now of the form

{xn(t) , t ∈ [T1, T2] , n = 1, . . . , N}

The simplest summary statistics are

x̄N (t) =
1

n

N∑
n=1

xn(t)

sdX(t) =

{
1

N − 1

N∑
n=1

(xn(t)− x̄(t))2

}1/2

which are the pointwise mean and standard deviation.
Sample standard deviation gives us an idea of variability in point t. But what if we wanted to know hot

the variability at point t relates to the variability of point s? We can consider the sample covariance function

ĉX(s, t) =
1

N − 1

N∑
n=1

(xn(s)− x̄(s))(xn(t)− x̄(t))

these are almost indistinguishable from their univariate or multivariate counterparts. The key difference
is that instead of having a mean or variance value (or vector), we have a mean or variance function, and
instead of having a Covariance matrix, we have a covariance function of two variables. Correlation can also
be defined in a similar manner. Some higher order moments can be defined for fda, see for example (Staicu
et al., 2012) for skewness in fda, and (Vidal et al., 2021) for kurtosis.

Exercise 14. Use the rainbow plot, from package rainbow in R, to visualize the functional boxplot of
both datasets showed in class until this point (temperature data for Canada, el niño/niña temperature in
Oceans) with function fboxplot. Please note that the functional data object used in this package is different
than the one used in package fda. Format accordingly. Now, detect outliers in both datasets, using the
functions foutliers from rainbow. If something is not clear about the usage, read the documentation of the
package (https: // cran. r-project. org/ web/ packages/ rainbow/ rainbow. pdf ) and the original paper
(Hyndman and Shang, 2010).

Exercise 15. We have expressed functions xn(t) as xn(t) ≈
∑M

m=1 cnmBm(t). One can show that the mean
can also be expressed as x̄n(t) =

∑M
i=1 amBm(t) and the covariance as ĉ(t, s) =

∑M
m=1

∑M
m=1 bmkBm(t)Bk(s).

Find the expressions for am and bmk assuming that Bm(t) are an orthonormal basis. An orthonormal basis
is an orthogonal basis with the additional condition that the norm of the functions is 1.

Now, an additional feature of fda than multivariate data analysis does not have is the ability to take
derivatives of the data. If we have a basis representation, you can just define the k-th derivative as

x(k)n (t) ≈
M∑

m=1

cnmB
(k)(t)

Note that the amount of informative derivatives we obtain from the data is dependent on the form of the
original basis functions.
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4.2 Penalized smoothing
The method studied until now for smoothing work when the original data is already somewhat smooth.
However, if the original data contains a high level of noise, the functional objects constructed in this way
will inherit this variability, resulting in very wiggly, variable curves. An example of this is precipitation data:
let’s say we have daily observations of precipitation data in a city. For example, precipitation in summer is
very high, approximately, 50 mm daily average. Let’s say we have two consecutive days, one with 58 mm of
precipitation, and one where it does not rain. Would we like for a curve to be close to those two points?

In order to solve this problem, we use something called penalized smoothing. For a given curve, suppose
we observe data (tj , yj). We assume that there exists a smooth curve x(t), t ∈ [t1, t2], and yj = x(tj) + ϵj ,
where E[ϵj ] = 0. The goal of smoothing is to try and elimate the contribution of ϵj . Once again, we will get
the representation

x(t) ≈ xK(t) =

K∑
k=1

ckBk(t)

where K is often much larger than M , and can be even bigger than the number of observations J . More
parameters than observations? Don’t worry, penalization deals with that!

Let L be a linear differential operator (we will be covering linear operators more closely later, but just
think of linear differential operators as linear combinations of derivatives).

L[x(t)] = α0(t)x(t) + α1(t)x
′(t) + · · ·+ αm(t)x(m)(t)

The optimization problem to solve now is

PSSλ(c1, . . . , ck) =
∑
j

(yj − xK(tj))
2 + λ

∫ T2

T1

[L(xK(t))]2

where λ is called the smoothing parameters. If λ is 0, we will get usual smoothing. If λ is too large,
the second term becomes becomes dominant, and the observed data may not be too close to the smoothed
curves. A good λ strikes a balance between overfitting and oversmoothing. We will use automated methods
to choose it, but a good idea is to plot it and see if they reflect data in an appropriate way.

A good and widely used operator for periodic data (Fourier basis) is called the harmonic accelerator
operator. Suppose you observe x(t) at tj points, with j = 1, . . . , J . Let K = 2J + 1, T2 − T1 = T . Assume
T1 = 0 for simplicity. then x(t) can be expressed as

x(t) = c0 +

J∑
j=1

[ajsin(ωjt) + bjcos(ωjt)], ω =
2π

T
,

then the harmonic accelerator is

L[x(t)] = ω2x′(t) + x(3)(t)

Exercise 16. Show that, for the harmonic accelerator,∫ T

0

[L(x(t)]2dt = πω5
J∑

j=2

j2(j2 − 1)2(a2j + b2j )

Exercise 17. Federal reserve yields are yield curves that are used to measure interest rates with respect
to maturity. You can find a dataset of Federal Reserve Yields in 1982 in the R package fds (Shang and
Hyndman, 2018).

Smooth the curves using B-splines with 4 basis functions. Plot raw and smoothed interest rates on the
same plot. Penalize using the second derivative as a a penalty operator, finding a suitable λ. Plot the raw
and the penalized smooth data. Which do you prefer?
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4.3 Functional Principal Components
Principal components have also been generalized from multivariate statistics to the functional setting, and
are one of the most useful and often used tools in FDA (and, in my opinion, more natural). Estimated FPC
(functional principal component) are related to the eigenfunctions of the covariance function, ĉ(t, s), akin to
multivariate statistics, where the covariance matrix determines the principal components.

The idea of FPCA is that, having found a smoothing for the data, with M basis functions, to find the
eigenfunctions v̂j such that

Xn − X̄N (t) ≈
p∑

j=1

ξ̂n,j v̂j(t),

where each v̂j represents the j-th most pronunced pattern of deviation from the mean sample function,
and the coefficients ξ̂n,j quantifies the contribution of each FPC to the shape of xn(t), and is called the score
of xn(t) with respect to v̂j(t).

The v̂j(t) hold this interesting property:∫
v̂j v̂idt =

{
0 if i ̸= j

1 ifi = j

and is also a basis in the space considered. That means that the eigenfunctions of the covariance function
form an orthonormal basis for the space of functions we are considering. The percentage of variability
explained by v̂j is related to the size of the scores ξ̂n,j . If you consider the eigenvalues, in order descending
order λ̂1, λ̂2, . . . you can find the percentage of explained variance as

CPV (m) =

∑K
k=1 λ̂k∑N
k=1 λ̂k

But in order to understand how to estimate v̂j and λ̂j , we need some more mathematical concepts, which
we will get into later. Now we will just use FPC as an exploratory tool and will estimate the functions with
some tools already implemented in R.

Exercise 18. The pinch dataset is included in the fda package. It consists of 151 measurements of pinch
force for 20 curves. Convert the data to functional data using 15 B-spline basis function or order 4 (cubic).
Plot them. Compute the mean and standard deviation functions, add them to the plot. Graph perspective
and contour plots for the sample covariance. Interpret. Graph the first four FPC of the data. How many
components do you need to explain the 90% of the variance?

Exercise 19. The Matérn covariance function leads to a very general family of stationary Gaussian pro-
cesses. The function is

σ2

Γ(v)2ν−1

(√
2ν|t− s|
ρ

)ν

Kν

(√
2ν|t− s|
ρ

)
for ν > 0, where σ2 is the variance parameter, ν is the smoothness parameter, and ρ is the range

parameter. Kν(·) is a modified Bessell function of the second kind. The paths of the Matérn process are k
times continuously differentiable for any v > k with probability 1.

Simulate 100 i.i.d Matérn processes with mean zero, for ν = 1/2, 2, 4. Set σ2 = 1 and ρ = 1. Use a
temporal grid of 50 evenly spaced points in [0, 1], and evaluate c(t, s) in this grid to get a covariance matrix
of 50× 50, call it Σ.

To evaluate Kν , use the R function BesselK(x, nu) where x is the value
√
2ν|t−s|

ρ and nu is ν. Now, sim-
ulate each trajectory using the covariance matrix Σ and a mean vector filled with zeroes, using a multivariate
random vector generator.

For each ν = 1/2, 2, 4, plot the simulated trajectories. Plot the first four FPC, comment on similari-
ties/differences. Plot the standard deviation for each ν, comment on similarities/differences. Create a plot
for the covariance structure for each ν, comment on similarities/differences.
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4.4 Bibliographic note
For a more rigorous definition of the statistics we considered, see section 2.4 of (Horváth and Kokoszka,
2012). FDA has also been applied to smooth solutions to differential equations, see (Ramsay et al., 2007).
Another interesting method for exploratory data analysis on curves is called curve alignment, which considers
that different curves in the same sample are similar to one another except that they are shifted in some way,
and that it is of interest to align them. See (Marron et al., 2015) for a thorough review.

End lecture 3.
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5 Some mathematical prerequisites

5.1 The space of functions
To simplify notation, lets assume all functions we consider are in [0, 1]. This does not limit our expressive
power: consider a function f in [a, b]. Then we can simply define the function f∗, such that f∗(u) = f(t)
where u = t−a

b−a , which retains the shape properties an is defined in [0, 1].
A function is said to be square-integrable if∫

f2(t)dt =

∫ 1

0

{f(t)}2dt <∞.

If the limits of integration are missing, assume that we are integrating over [0, 1]. Let’s call the space of
all functions that are square-integrable L2.

Square integrable functions form a vector space. That means that if f, g ∈ L2, then af + bg ∈ L2 for
some scalars a, b.

In L2 we can define the inner product

< f, g >=

∫
f(t)g(t)dt.

We say that functions are orthogonal if

< f, g >= 0.

This allows us to introduce the notion of distance between functions via the norm

||f || =
√
< f, f > =

{∫
f2(t)dt

}
,

so that the distance between functions in L2 is defined as

d(f, g) = ||f − g||.

Properties of an inner product space. A vector space V is an inner product space if for each x, y ∈ V
there is a scalar < x, y >, called the inner product, which has this properties:

i) < x, y >=< y, x >
ii) < a1x1 + a2x2, y >= a1 < x1, y > +a2 < x2, y >
iii) < x, x >≥ 0, and < x, x >= 0 if and only if x = 0.

Exercise 20. Prove that L2 is an inner product space.

Properties of the norm. Let || · || be a norm defined by the inner product. Then
i) ||ax|| = |a|||x||.
ii) | < x, y > | ≤ ||x||||y||, called the Cauchy-Schwartz inequality.
iii) ||x+ y|| ≤ ||x||+ ||y||, called the triangle inequality.
iv) d(x, y) = ||x− y|| is a metric.

Exercise 21. Prove that i, ii, iii hold for the norm we defined in L2.

As we have seen, basis expansions play a role in fda. We say that a set of functions {e1, e2, . . . } is a basis
in L2 if every f ∈ L2 admits a unique expansion

f(t) =

∞∑
j=1

ajej(t)

If {e1, e2, . . . } is an orthonormal basis, we have that aj =< f, ej > and we have Parseval’s equality∫
f2(t)dt = ||f ||2 =

∞∑
j=1

< f, ej >
2=

∞∑
j=1

{∫
f(t)ej(t)dt

}2
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5.2 Random elements
Like in usual statistics, we have samples x1, . . . , xN , which we say are realizations of X1, . . . , XN . In uni-
varirate statistics, we say each X1, . . . , XN is a random variable, and in multivariate statistics we say it is a
random vector. In the fda case, we say they are random functions.

Just as random variables, random functions are defined in a probability space, Ω, such that for each
ω ∈ Ω, X(ω) is a determinsitic function. We assume all realizations X(ω) are elements of L2, that is

||X(ω)||2 =

∫
{X(ω)(t)}2 <∞

The function ω → ||X(ω)|| is a classic random univariate variable, and we can ask things like E||X||2 <∞,
that means, if it has a finite second moment (or in this case, if it is square integrable). For a random function
X, we define

µ(t) = E[X(t)], c(t, s) = E[(X(t)− µ(t))(X(s)− µ(t))]

where X̄N (t) and ĉ(t, s) we considered earlier are estimators of µ and c.
By the Karhunen-Loéve, we can express any square integrable function X as

X(t) = µ(t) +

∞∑
j=1

ξjvj(t)

where the vj depend on the covariance function c of X. Specifically, they are the eigenfunctions of c, i.e.,
they are the solutions to the equation ∫

c(t, s)v(s)ds = λv(t)

there are countable many solutions, (λ1, v1), (λ2, v2), . . . , which are called the eigenvalue-eigenfunctions
pairs of X (or c), such that they are arranged in nonincreasing order λ1 ≥ λ2 ≥ . . . . The random variables
ξi, called the scores, are

ξj =< X − µ, vj >=

∫
(X(t)− µ(t))vj(t)dt

and it can bee shown that

E[ξj ] = 0, E[ξ2j ] = λj , Cov[ξj , ξk] = 0 if j ̸= k

and

E

[∫
(X(t)− µ(t))2dt

]
= E||X − µ||2 =

∞∑
j=1

λj

So the λ represent the variance of X. Functions vj form an orthonormal basis, and are called the FPC
of X. They are optimal in the sense that X can be approximated by a few of them.

Exercise 22. Consider a standardized (σ2 = 1) Brownian Motion Process, or Wiener process in an interval
(0, T ) , and call it W (t). The Brownian bridge is defined as

B(t) =W (t)− tW (T )

The mean and covariance of this process are:

µ(t) = 0

c(s, t) = s(1− t)
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The eigenfunctions/eigenvalues pair for this process are

vk(t) =
√
2sin(kπt)

λk =
1

k2π2

Verify that the above are eigenfunction/eigenvalue pairs. Verify that the eigenfunctions are orthogonal.

Exercise 23. Let {h1(t), h2(t), . . . } be a basis. One can define the following orthonormalization

e0 =
h0

||h0||
, en+1 = αnen + βn+1hn+1

where αn = −βn+1 < en, hn+1 > and

β2
n+1 =

1

||hn+1||2 − | < en, hn+1 > |2

This is called the Gram-Schmidt orthonormalization. Consider the first six functions in the base of mono-
mials, xm with m = 0, 1, . . . in [0, 1]. Plot the original elements, plot the orthonormalized elements.

End of Lecture 4.
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5.3 Linear Operators
Linear operators are defined in vector spaces. If V1, V2 are two vectors spaces, a function L : V1 → V2 is
called Linear if L(ax+ by) = aL(x) + bL(y) where x, y ∈ V1 and L(ax+ by) ∈ V2.

In functional data analysis, we get this types of operators a lot of time

L1(x) : L
2 → R,

L1(x) =

∫
ψ(t)x(t)dt

and

L2(x) : L
2 → L2,

L2(x) =

∫
ψ(t, s)x(s)ds

which are both called integral operators. L1 transforms a function x to a real number L1(x), and L2

transforms a function x to another function L2(x). It is easy to check linearity.
To ensure that the function L2(x) is square integrable, we must assume that∫ ∫

ψ2(t, s)dtds <∞ (1)

The functions ψ are called the Kernels of the respective operators, and an integral operator with Kernel
satisfying Equation 1 is called a Hilbert-Schmidt operator.

An operator is called symmetric if

< L(x), y >=< x,L(y) >

Exercise 24. Check if the following operators are symmetric

i)L1(x) =

∫ t

0

x(u)du

ii)L2(x) = x(1− t)

iii)L3(x) =

∫
x(t)y(t− u)du

where x, y ∈ L2[0, 1]

Now, an operator is called semi-positive definite if

< L(x), x >≥ 0

An operator that is used very often in FDA is called the covariance operator. The covariance function
we discussed earlier c(t, s) is the Kernel of this covariance operator. The operator is

C(x) =

∫
c(t, s)x(s)ds

The FPC are then the eigenfunctions

C(vj) = λjvj

The operator is symmetric since

19



c(t, s) = E[X(t)X(s)]

= E[X(s)X(t)]

= c(s, t)

and it is positive definite since∫ 1

0

∫ 1

0

c(t, s)y(t)y(s)dtds =

∫ 1

0

∫ 1

0

E[X(t)X(s)]y(t)y(s)dtds

=

∫ 1

0

E[X(t)]y(t)dt

∫ 1

0

E[X(s)]y(s)ds

=

∫ 1

0

(E[X(t)y(t)]dt)2

= E

[
(

∫ 1

0

X(t)y(t)dt)2
]

≥ 0

where the last step follows from x, y ∈ L2. This operator is also Hilbert-Schmidt. Since it is symmetric,
positive definite, and Hilbert-Schmidt, it has the following convenient representation

C(x) =

∞∑
j=1

λj < x, vj > vj

5.4 Bibliographic remarks
The mathematical theory for FDA can be much more rigorous and involved. See chapter 10, 11, 12 from
(Kokoszka and Reimherr, 2017), or (Hsing and Eubank, 2015) for a deeper dive. The book by Debnath
and Mikusinski (2005) can be used as a reference for functional analysis and Hilbert spaces, and the book
(Akhiezer and Glazman, 2013) can be used as a reference for linear operators.

6 The functional Linear Model
The linear model. The holy grail of the first year statistics courses, usually introduced at the end of an
univariate statistics sequence of courses or at the middle/end of multivariate statistics courses. Let’s recall
the linear model

yi = xi1β1 + xi2β2 + · · ·+ xipβp + ϵi, i = 1, . . . , N (2)

or in matrix notation

Y = Xβ + ϵ

where Y is a N ×1 vector of responses, X is a (N +1)×p regression matrix of covariates (+1 because of
the intercept), β is a p×1 parameter vector and ϵ is a N×1 vector of zero mean errors. Recall that by using
least squares we can get the estimation β̂ = (XTX)−1XTY , with plentiful of known diagnostics/hypothesis
testing scenarios to be drawn from here. ¿So how do we turn this into its functional analogue? They are,
actually, plenty of options to touch, we will cover here:

• ¿What if we turn responses y, which are usually scalars, into responses y(t), which are functions? That
is, we want to predict/explain functions using multivariate covariates. This is called function-on-scalar
linear regression.
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• ¿What if we keep responses as scalars, y, but want to use functional, X(t) covariates? That is, we would
want to predict/explain scalars using functions. This is called scalar-on-function linear regression.

• ¿What if we turn responses and covariates into functions? That is, we want to predict/explain functions
using other functions. This is called function-on-function linear regression.

6.1 Scalar-on-function linear regression
The scalar-on-function linear regression with one functional predictor can be expressed as

yi = α+

∫
β(s)xi(s) + ϵi

where we want to estimate the scalar intercept β0 which is the mean of yi when β(t) = 0, and the
functional parameter β(t). There are many ways to estimate β(t). The easier is by basis expansions.
Assume that you can express the regression coefficient as a sum of basis functions

β(t) =

K∑
k=1

ckBk(t).

The selected basis functions Bk influence the shape of the estimate. The number K of selected basis
functions will affect the smoothness of β(t), and is usually chosen to be smaller than the number of points tj
at which the original covariates where observed. Choices of K can be data driven, as we will discuss shortly.
Using the expansion

∫
β(t)xi(t)dt =

K∑
k=1

ck

∫
Bk(t)xi(t)dt

=:

K∑
k=1

ckxik

So we can express this problem as a problem in the form of Model 2

Yi = β0 +

∫
β(s)xi(s)ds+ ϵi

= β0 +

K∑
k=1

ckxik + ϵi

which can be solved by usual least squares methods. The resulting estimate is

β̂(t) =

K∑
k=1

ĉkBk(t)

where

ĉ = (XTX)−1XTY

and

X =


1 x11 x12 . . . x1K
1 x21 x22 . . . x2K
...

...
...

. . .
...

1 xN1 xN2 . . . xNK



21



The disadvantage is that the estimate depends on the shape of the chosen basis functions and the number
of basis functions, so we get restricted shapes for β(t), somewhat subjective. An usual approach is to use
the same basis functions used for the basis expansion of the regressor curves xi(t). This estimate is biased
because of the truncation done by approximating β(t) with a finite number of basis functions.

Another method of estimating β(t) is with a roughness penalty (to ensure smoothness and low variability,
as shown in previous classes). In the precious estimation procedure, we had to choose K, which can be seen
as a tuning parameter which adjusts the smoothness of β̂(t), but from this perspective, it is usually more
desirable to smooth by using a roughness penalty term instead of tuning via K. For this method, we still
have the expansion

β(t) =

K∑
k=1

ckBk(t)

where K is usually bigger and equal to the amount of points t, at which Xi is observed. The roughness
penalty approach then solves the optimization problem

Pλ(α, β) =

N∑
i=1

{
Yi − α−

∫
β(t)Xi(t)dt

}2

+ λ

∫
[L(β(t))]2dt

where L is a linear differential operator applied on β(t) and λ is the smoothing parameter. The idea
is to penalize rough functions using the second term. A common choice for L is L[β(t)] = β′′(t). Once
again, choosing λ is crucial. If it is too large, β is too smooth and important aspects of the curve may be
suppressed.

When we use REML (restricted maximum likelihood) as the estimation procedure for getting β̂(t) we
obtain estimations of random effect variance, and in turn this variances serve as the tuning parameter that
controls the smoothness of β(t) so we don’t have to bother into choosing an appropriate λ.

A final way to estimate β(t) is using functional principal components. First, remember that each X ∈ L2

can be expanded as

X(t) = µ(t) +

∞∑
j=1

ξjvj(t)

where vj are the the eigenfuntions of the covariance operator. We can arrive at the standard linear
regression model (Equation 2) by using the approximation

Xi(t) = µ̂(t) +

p∑
k=1

ξ̂ijvj(t)

where

ˆξij(t) =

∫
[Xi(t)− µ̂(t)]v̂j(t)dt

which gives us the model

Yi = α+

∫
β(t)(µ̂(t) +

p∑
j=1

ξ̂ij v̂j)dt+ ϵi (3)

= α+

p∑
j=1

ξ̂ijβj + ϵi (4)

where β0 = α +
∫
β(t)µ̂(t)dt and βj =

∫
β(t)v̂j(t)dt, which are the unkown parameters to estimate.

Defining the N × (p+ 1) matrix
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Ξ =


1 ξ̂11 ξ̂12 . . . ξ̂1K
1 ξ̂21 ξ̂22 . . . ξ̂2K
...

...
...

. . .
...

1 ξ̂N1 ξ̂N2 . . . ξ̂NK


we can estimate the parameter vector β = [β0, β1, . . . , βp]

T by the least squares estimator of Y = Ξβ+ ϵ.
Call β̂0, β̂1, . . . , β̂p the estimatimes of this least squares problem. Then the functional parameters are

β̂(t) =

p∑
j=1

β̂j v̂j

α̂ = β̂0 −
p∑

j=1

β̂j

∫
v̂j(t)m̂u(t)dt

An important aspect is to select the number p of estimate functional principal components. A simple
approach is select the number of FPC which explain 85, 90, 95, 99 percent of cumulative variance.

We have considered three different estimation methods. ¿Which is the best one? Goldsmith and Scheipl
(2014) compare various estimation methods on many different datasets, and conclude that the choice of
method depends on the data.

Exercise 25. Consider the tecator dataset in fda.usc which is comprised of N = 125 meat samples,
where the explanatory curves are spectral curves at some wavelengths and we have three possible responses:
percentage of fat, percentage of water, and percentage of protein.

i) For the 3 possible responses, plot scatters for each pair and try to find relations between them.
ii) Find the median of the three responses. A curve will be considered high if it has a higher response

than the median, low if it does not. Plot on the same grid high and low curves (with different colours per
group) for each response.

iii) Smooth the curves using penalized splines, finding an adequate λ using methods discussed on class.
iv) Derive the curves, repeat ii) with the derivatives of the curves. Comment which responses for deriva-

tives or original curves where the groups more easily identifiable.
v) Plot smoothed functions, their mean, their standard deviation, analyze.
vi) Find FPCA adequately for the curves.
vii) Perform scalar on fuction regression using the three methods discussed. Plot β̂(t) for all methods in

the same grid. Compare R2. Discuss.

6.2 Bibliographic remarks
For more information on functional linear models, refer to (Ramsay et al., 2005) where many chapters are
reserved for this topic. You can also consider nonlinear scalar-on-function regression. One such method is
based on functional generalized additive models, that take the form

Yi = α+

∫
f(Xi(t), t)dt+ ϵi

where f is smooth. See (McLean et al., 2014) for more information. This method is implemented as af()
on refund. Also, we can consider the problem

Yi = m(xi) + ϵ

where m : L2 → R is a functional that must be estimated. Ferraty and Vieu (2006) dedicate almost a
whole book on such problem. The paper by Reiss et al. (2017) reviews many approaches for the scalar-on-
function regression problem.

End lecture five.
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6.3 Functional response models
The function-on-regression model can be written as

Yi(t) = xi1β1(t) + xi2β2(t) + · · ·+ xiqβq(t) + ϵi(t), i = 1, . . . , N (5)

that means that each unit i you have a functional response Yi with q scalar explanatory variables. The
functions β1(t), . . . , βq(t) are generally called the effect functions. We can define the following matrix and
vectors:

Y (t) =


Y1(t)
Y2(t)

...
YN (t)


,

X =


x11 x12 . . . x1q
x21 x22 . . . x2q
...

...
. . .

...
xN1 xN2 . . . xNq


,

β(t) =


Y1(t)
Y2(t)

...
Yq(t)


,

ϵ(t) =


ϵ1(t)
ϵ2(t)

...
ϵN (t)


,

and then the model 5 can be written as

Y (t) = Xβ(t) + ϵ(t),

so for any fixed t, you have an usual least squares problem, that could be solved by

β̂(t) = (XTX)−1XY (t)

this assumes that Yi(t) are fully observed. But even if Yi(t) are observed at different time points for
different curves we can first smooth and interpolate the missing values. If they are not observed in different
times, β̂(t) can be estimated with the raw observations Yi(tj).

Another possibly interesting analysis is to consider the residual curves

ϵ̂(t) = Y (t)− Ŷ (t)

where

Ŷ (t) = Xβ̂(t)

and find its functional principal components. The way we could understand better the variance that was
not explained by our initial function-on-scalar model. But we just estimated βl pointwise, which is only
justified if the Yi(t) are smooth enough. If this assumption is not met, we of course could use some penalties
to ensure the smoothness of our effect curves. Assume that the effect funcions admit the expansion
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βl(tj) =

K∑
k=1

blkϕk(tj)

where ϕ1, ϕ2, . . . , ϕK are some basis functions, which number (K) should be large. Assuming all responses
are available for each tj , 1 ≤ j ≤ J , model in Equation 5 could be written as

Y = XBΦ+ ϵ

with the matrices

Y = [Yi(tj), 1 ≤ i ≤ N, 1 ≤ j ≤ N ], (N × J)

X = [xil, 1 ≤ i ≤ N, 1 ≤ l ≤ q] (N × q)

B = [blk, 1 ≤ l ≤ q, 1 ≤ k ≤ K] (q ×K)

Φ = [ϕk(tj), 1 ≤ k ≤ K, 1 ≤ j ≤ J ] (N × J)

ϵ = [ϵi(tj), 1 ≤ i,≤ N, 1 ≤ j ≤ J ], (N × J).

The penalized sum of squares is then defined as

N∑
i=1

J∑
j=1

(Yi(tj)− [XBΦij ])
2 +

q∑
l=1

λl

∫
{(Lβl)(t)}2 (6)

define the matrices Λ = diag(λ1, λ2, . . . , λq) and R = [
∫
L(ϕl)(t)L(ϕk)(t)dt, 1 ≤ l, k ≤ K]. Also, let

vec(M) be a column vector of length pq constructed by stacking the columns of M , placing the first column
on top. Also let A ⊗ B be the Kronecker product between matrix A and matrix B. The elements of the
matrix B which minimizes Equation (6) can be expressed as

vec(BT ) = [UTU +Λ⊗R]−1UT vec(Y T )

where U = X ⊗ΦT . We will omit the proof of this, which is quite involved.

Exercise 26. Compute the length of the vector vec(BT ) based on the above equation.

One common goal when we are using linear regression models is to test wether some regressors have
effects on the data. Conisder the model in Equation 5, an consider, for m < q, that we wish to test

H0 : βm+1(t) = · · · = βq(t) = 0, ∀t ∈ [0, 1]

First, consider the quantities

Rp(t) =

N∑
i=1

(Yi(t)−
p∑

j=1

xij β̂
(p)
j (t))2

and

Rm(t) =

N∑
i=1

(Yi(t)−
p∑

j=1

xij β̂
(m)
j (t))2

where β̂(p)
j (t) and β̂

(m)
j (t) are the estimators of βj using a model with p and m regressor respectively.

Also, define

F (t) =
Rm(t)−Rp(t)/(p−m)

Rp(t)/(N − p)

since the estimation of βj generally is pretty involved and require penalties, F (t) does not have an F
distribution, even for a fixed t. But consider the statistic
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F̂sup = sup
t∈[0,1]

F̂ (t)

The distribution of F̂sup under H0 is unknown but it can be approximated as follows. Consider the N !
permutations, π, of the indexes {1, 2, . . . , N} and consider the permutated dataset

Dπ = (Yπ(i)(t), t ∈ [0, 1], xπ(i),1, . . . , xπ(i),q)

So sing Dπ, compute β̂(m)
π,j (t) for j = 1, . . . ,m and β̂

(p)
π,j(t) for j = 1, . . . , q and find the statistics F̂π

sup.
The N ! values of F̂π

sup are arranged from smallest to largest. Let c0.95(N) be the 95-th percentile of F̂π
sup.

Then, the null hypothesis is rejected if F̂sup > c0.95(N). This is what we call in statistics a permutation test.
You can check some standard textbook, like Manly (2018) for justification of these kinds of procedures.

The methods we have discussed in this subsection are implemented in the refund package.

Exercise 27. This exercise illustrates other uses of permutation testing in functional data analysis Let’s
say we observe two samples of curves defined on the same interval, X1, . . . XN and XN+1, . . . XN+M . where
the first N curves are i.i.d draws from a population with mean function µ1 and the last M curves are i.i.d
draws from a population with mean function µ2. We want to test

H0 : µ1(t) = µ2(t) ∀t ∈ [0, 1]

Define the test statistic

T̂sup = sup
t∈[0,1]

T̂ (t) =
|X̄N (t)− X̄M (t)|{

N−1V̂N (t) +M−1V̂M (t)
}1/2

where X̄N and X̄M are the sample means for each set of curves, and V̂N (t), V̂M (t) are the sample variances.
The null hypothesis is rejected if T̂sup is large for some t. The distribution of T̂sup is unknown but can be
approximated via permutations. Let the indexes be {1, . . . , N,N +1, . . . , N +M} and let π be a permutation
on this indexes. If H0 is true, the two samples Xπ(1), . . . , Xπ(N) and Xπ(N+1),...,Xπ(N+M)

have the same
mean, and we can use T̂π

sup as an approximation of the distribution of T̂sup. Apply this methodology then to
test the null hypothesis

H0 : µM (T ) = µF (t)

where µM is the mean growth curve of males and µF is the mean growth curve of females in the Berkeley
growth dataset curve. Plot T̂ (t) and c0.95(N +M) on the same plot

6.4 The fully functional model
Now let’s consider the fully functional linear model, or function-on-function regression model.

Yi(t) = α(t) +

∫
ψ(t, s)Xi(s)ds+ ϵi(t), i = 1, . . . N

The responses Yi(t) is a function, the regressor Xi is also a function. The regression coefficient is a
bivariate function, or kernel, ψ. We can be a little more general and include some more functional regressors,
as well as some scalar regressors. We will only consider two functional regressors, since more will burden
our analysis with excessive notation, but keep in mind that the procedure is easily generalizable. Then, the
model has the form

Yi(t) = α(t) + wT
i γ +

∫
S
ψ1(t, s)Xi1(s)ds+

∫
R
ψ2(t, s)Xi2(r)dr + ϵi(t) (7)

so for each subject i, 1 ≤ i ≤ N we observe
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Yi(tij), 1 ≤ j ≤ Ji; Xi1(sik), 1 ≤ k ≤ Kj ; Xi2(ril), 1 ≤ l ≤ Li

as well as the values of the scalar regressors w = [wi1, wi2, . . . , wiq]
T . The unknown parameters are

γ = [γ1, . . . , γq]
T and the bivariate functions ψ1 and ψ2. The response functions are defined on the compact

interval T , while the regressors on possibly different intervals S and R. ϵi are assumed to be i.i.d. Gaussian
random functions. Also, assume Xi1 and Xi2 are centered.

Also, assume that tij , sik and ril are dense in their respective domains. If they are sparse, other method-
ologies should be used. Consider the simple setting in which the functions are observed on the same dense
grids, tij = tj , sik = sk, ril = rl for each subject. Now, let the intercept function be represented as

α(t) =

M∑
m=1

αmBm(t)

where B1, B2, . . . , BM are some basis functions and M is sufficiently big. We also need to represent ψ1, ψ2

as a linear combination of basis. Note that they are Bivariate, so we need a bivariate basis system. These
systems are generally constructed as products of univariate basis functions. We then use the approximations

ψ1(t, s) =

G∑
g=1

ψ1,gB1,g(t, s)

ψ2(t, r) =

H∑
h=1

ψ2,hB2,h(t, r)

Using this expansions, and approximating the integrals in Equation 7 as a Riemann sum,

∫
S
ψ1(t, s)xi1(s)ds =

K∑
k=1

(sk − sk−1)ψ1(t, sk)Xi1(sk)

=

K∑
k=1

(sk − sk−1)

G∑
g=1

ψ1,gB1,g(t, sk)Xi1(sk)

=

G∑
g=1

B∗
1,g,i(t)ψ1,g

where B∗
1,g,i =

∑K
k=1(sk − sk−1)B1,g(t, sk)Xi1(sk). Analogously,∫

S
ψ2(t, r)xi2(r)dr =

H∑
h=1

B∗
2,h,i(t)ψ2,h

where B∗
2,h,i(t) =

∑L
l=1(rl − rl−1)B2,h(t, rl)xi2(rl). Note that B∗

1,g,i and B∗
2,h,i(t) are both known if the

basis functions are chosen. The number of basis functions, G and H is typically large. Therefore, we can
write Equation 7 as

Yi(tj) = wT
i γ +

M∑
m=1

Bm(tj)αm +

G∑
g=1

B∗
1,g,iψ1,g +

H∑
h=1

B∗
2,h,i(t)ψ2,h + ϵi(t)

End lecture six.
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