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A B S T R A C T

One of the standard problems in statistics is determining if two samples come from the same population, that is,
testing homogeneity for two samples. In this paper, we propose homogeneity tests in the context of functional
data, adopting an idea from multivariate analysis corresponding to the depth-depth plot. This plot is a multi-
variate generalization of the quantile-quantile plot. We propose some statistics based on the depth-depth plot, and
use bootstrapping to approximate their null distributions. We conduct simulations to state the empirical size and
power of the proposed tests, obtaining better results than other homogeneity tests considered in the literature. We
detect that our test has very high power in relation to other competing tests. We employ many different depths
based on what is proposed in the literature to see which is more suitable for this kind of homogeneity testing.
Finally, we illustrate the obtained results with chemical heterogeneous data to show potential applications,
getting consistent results.
1. Introduction

Functional data analysis (FDA) is an area of statistics of important
current development, where the data are functions. The term FDA was
coined by Ramsay (1982) [53], but the area is older and dates back to the
50s [27,55]. With the advance of technology, continuously recorded data
have become more common, and thus interest in FDA has spiked,
particularly in times of big data and data science [2,51]. In the FDA
context, we consider that certain functions originated the data that we
record discretely, and that those functions are the sample members, not
the explicit discrete data. Pre-processing discrete data for smoothing
them is a usual step, but some methods do not need this. Often, the
continuum in which functional data take values is the time. However,
recently certain potential applications have appeared for spatially
recorded or spatially correlated functional data [14,24–26,40]. Other
applications have investigated the potential of FDA characterization,
comparison, and classification for chemical data [1,4]. For a complete
introduction to FDA, the interested reader is referred to [19,52], as well
as to [10,65] for reviews of the recent advancements in the area.

There are different two-sample tests for homogeneity with non-
functional data, as for example those presented in [36,60]. Previous
work on testing for homogeneity in the two-sample problem for
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functional data include testing for location –or mean– [11,16,41,47], for
equality of covariance operators [23,32,45], or equality of functional
principal components [39,49]. If two samples come from the same
population, they are homogeneous, otherwise, they are heterogeneous.
In FDA, we rarely consider explicit distributions and then we say that two
samples are homogeneous if they come from the same parent or gener-
ator process.

Testing general equality in distribution of specific characteristics of
the samples was studied in [29] for multivariate and infinite-dimensional
distributions (that is, functional) by considering specific measures of
distance between the data. A Cram�er-von Mises type statistic to test
equality of two-sample distributional functionals was considered in [28].
By using a L2 type criterion, tests for two-sample problems in the field of
oceanography were proposed in [3]. The same type of criterion was
employed in [31] for the empirical characteristic function to propose a
two-sample test with univariate and multivariate functional data. The
kernel method was utilized in [69] to state a maximummean discrepancy
type test for the two-sample problem in a functional space.

The concept of data depth in the multivariate context was introduced
in [61] and a first notion of functional depth was stated in [21]. The idea
behind this notion is to measure how much time each function is deep
inside the sample, that is, how surrounded the function is by other
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functions. Their idea is to measure univariate depth for each instant of
time and the deepest function is those that maximizes these univariate
depth functions on average.

The random-Tukey depth (RTD) was proposed in [8], which ap-
proximates the Tukey depth. Instead of considering all the possible
one-directional projections of each point or curve in a sample, it only
takes into account some random one-directional projections of each point
or curve. This makes the depth computationally efficient while main-
taining good convergence properties.

A depth based on the bands defined by curves was proposed in [37]. A
band is a portion of the plane that is delimited by a given number of
curves. Then, we count how much each curve is contained in each of
those bands, with a curve being deeper as more bands contain it. The
original measure chooses all the possible bands created by each combi-
nation of curves contained in a sample. If the sample size is large, then
this is computationally intractable. Thus, an adjusted band depth (ABD)
was proposed in [42], which only considers the bands generated in every
pair of curves of the sample.

The notion of depth-depth (DD) plots was introduced in [35], which
are a way of comparing multivariate distributions of two samples uti-
lizing depth measures. There are several examples of successful uses of
depth measures in FDA, as for example in [59], where the boxplot was
extended to FDA and called it the functional boxplot; or as in [9], where
the DD plot was employed for supervised functional data classification.

Other two-sample homogeneity tests can be based on functional
generalizations of the concepts of ordering from low dimensional data
(quantiles for univariate data and depth for multivariate data), believing
that these orderings reflect the law governing the process that generates
the data samples. A nonparametric test based on depth of combined
samples was proposed in [20].

Alternative orders which are not based on depth can be found in the
literature. For example, by using the epigraph and hypograph of a
function proposed in [38], we can order from largest to smallest values or
from smallest to largest values (as opposed to depth, which organizes
data from the center-out). The dimension of a functional data problem
was reduced by employing epigraph and hypograph in [22], generalizing
quantiles of functional data derived in [38]. After transforming the
functional samples, traditional bivariate two-sample tests were applied.
A new order for functions based on areas under curves utilized for
generalizing the concept of the Kendall coefficient for
infinite-dimensional data was introduced in [62]. To the best of our
knowledge, a general two-sample homogeneity test for functional data
using nonparametric tools, and particularly DD plots, has not been
studied until now.

To propose a test from the DD plot, one must be able to compute a
statistic from the set of pairs that comprise this plot. In a multivariate
setting, some statistics for testing homogeneity of scale and location
based on the construction of DD plots in multivariate samples were
proposed in [33]. Other statistics have also been proposed in the litera-
ture. For example, a modification of the Kurskal-Wallis test using ranks
given by the DD plot construction was proposed in [7]. A test statistic
based on the correlations between the depths of the combined sample
between each of the individual samples was derived in [46]. Note that
homogeneity based on DD plots and their corresponding test statistics
(and in general for many kinds of test statistics) has been successfully and
widely employed in the multivariate literature. However, observe that all
of these test statistics based on the DD plot only consider specific dif-
ferences between samples considering location or scale, but they do not
consider differences in distributions as a whole. Therefore, also to the
best of our knowledge, in the literature on the topic, there are not sta-
tistics based on DD plots that can detect whether two samples can have
been generated from different distributions, similarly to the philosophy
of the Kolmogorov-Smirnov test in the univariate case [6].

Therefore, our primary objective is to construct multivariate homo-
geneity tests based on DD plots for FDA. Note that we are not proposing a
new measure of data depth for FDA but homogeneity tests that employ
2

the existing approaches from the literature. The secondary objective is to
demonstrate that the new tests are more powerful in varied scenarios
than other two-sample tests proposed until now. We evaluate our tests by
simulations, knowing previously whether the samples are homogeneous
or not, and following the simulation scenarios proposed in [22] as well as
further scenarios. Since distributions of functional data are rarely
considered in an explicit way, their direct comparison is often unfeasible.
Then, a good homogeneity test must compare different aspects of the
samples like means, variance/covariance structure, and curve shapes
simultaneously, while a two-sample test is not good if only contrast
means between samples. We compare our tests with order-based tests in
size for several simulation scenarios. We believe the power of these tests
can be improved in some cases. Our approach is general because we test
equality in law and not in specific characteristics of the samples. In this
work, we evaluate different depths or measures in various simulation
scenarios empirically, assessing what measures work best for two-sample
tests using DD plots. We detect that our test has very high power
compared to other competing tests and employ different depths based on
what is found in the literature to assess which is more adequate for this
kind of homogeneity testing.

The rationale of the proposed statistic is that it assesses whether two
samples differ in some characteristics of the distributions that are
generating the data and not just in one specific characteristic. This is the
reason why we have proposed diverse simulation scenarios and shown
numerically that our statistic does indeed work in these scenarios. The
deficiency of the other statistics proposed in the literature till the date
versus our statistic is that we propose a more general method, that is, the
proposed statistic considers any kind of heterogeneity between the two
samples, while other statistics consider a more specific heterogeneity (in
location or in scale).

Our statistic, such as it was proposed, is not designed to identify
differences between any specific parameter of the two functional distri-
butions to be tested but whether both functional samples come from the
same functional distribution or not. If the test rejects the null hypothesis,
this test detects a difference in the distributions that are generating both
samples to be contrasted. Nevertheless, this decision does not identify
which are the parameters that may be giving rise to this difference,
similarly to the philosophy of the Kolmogorov-Smirnov test in the uni-
variate case [6], as mentioned. In the multivariate case, the differences in
location parameters could generate some specific shapes in the DD plot,
and analogously for the differences between the scale and asymmetry
parameters [35]. However, due to the nature of the functional data,
where the mean curve can even have a very small depth value, these
same differences could not be stated. Then, under the alternative hy-
pothesis and in general for any statistic, the shape of the DD plot in
functional data should not be a criterion to determine if the difference
between the two functional distributions that generate the data is due to
changes in a location parameter or in a scale parameter. Nonetheless,
although a general purpose test, as one based on the statistic proposed in
the present investigation, is helpful in a broad range of settings, once the
hypothesis of homogeneity is rejected, it is natural to ask us in what way
the two functional distributions differ. Thus, exploring the shape of a DD
plot might have some information to offer regarding the nature of the
difference, since this is the reason for considering various rationales in
the existing DD plot-based test statistics in a multivariate setting.
Therefore, identifying in what functional parameter(s) the distributions
are differing based on the test statistic proposed in this study is an
interesting aspect to be further explored.

The paper is organized as follows. Section 2 presents functional
depths, depth measures for functional data, and homogeneity tests pro-
posed in the literature. In Section 3, we introduce our DD plot-based tests.
In Section 4, the results of a simulation study are reported while
comparing our tests with other competing tests. Section 5 applies the
tests proposed to real-world chemical data. Finally, in Section 6, we
provide the main insights of this work and ideas for future research.
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2. Functional depth

In this section, we introduce the concepts of functional depth, depth
measures for functional data, and homogeneity tests proposed in the
literature used in this investigation.

The depth measures may be employed to generalize the quantile
concept to the multivariate case. These measures provide an inward-out
ordering of the sample elements, where a multivariate median can be
defined as that deepest point. Similar ideas can be adapted to the FDA
context utilizing depth measures for some statistical concepts like cen-
trality, shape, or closeness between sample curves. In functional depth,
one can interpret the deepest function on a sample as themedian function.

These notions of inward-out ordering have been generalized for FDA.
Thus, many depths have been proposed for this ordering with the sample
being a set of curves, where the functional depth can be used to explore
different statistical features of these curves. To define the different no-
tions for functional depth employed in this work, let us introduce below
the main definitions and preliminary notations.

Consider a sample of functions X � fx1ðtÞ;…; xnðtÞg; where each
xi(t), for i 2 {1, …, n}, is a function observed on the same interval T ⊂R.
In practice, functions are observed on a discrete set, but we assume that
some smoothing steps are performed in order to obtain smooth and
continuous functions

The Fraiman and Muniz (FM) depth [21] is defined as follows. Fix a
t 0 2 T and then evaluate each curve at t0 obtaining a univariate observed
sample {x1(t0),…, xn(t0)}. Now, for i-th curve evaluated at t0, consider the
univariate depth Dn(xi(t0)), and state the FM depth for xiðtÞ 2 X as

FMðxiðtÞÞ ¼
Z
T
DnðxiðtÞÞdt; i 2 f1;…; ng; (1)

that is, the expression stated in (1) is the average of the depths for all
t
0 2 T . Note that Dn defined in (1) can be any notion of univariate depth,
such as

Dnðxiðt0 ÞÞ ¼ 1� j0:5� F̂n;tðxiðt0 ÞÞj; (2)

where F̂n;t defined in (2) is the empirical distribution function on x1(t0),
…, xn(t0). Hence, the deepest function in the sample of curves X is the
deepest, on average, for each t 2 T .

The random projection depth (RPD) proposed in [13] considers
random univariate projections of the curves. Let v(t) be a Brownian
motion on the interval T . A realization vj(t) of v(t) can project each curve
xiðtÞ 2 X onto R by using the standard inner product given by

〈vjðtÞ; xiðtÞ〉 ¼
Z
T
vjðtÞxiðtÞdt; i; j 2 f1;…; ng: (3)

Denote the projection formulated in (3) by ri,j. Let v1(t), …, vp(t) be p
realizations of the Brownian motion v(t), and ri,1, …, ri,p be the p uni-
variate projections for a fixed curve xi(t), with i 2 {1, …, n}.

Let F̂nðri;jÞ be the empirical distribution function evaluated at ri,j, but

F̂n is calculated with respect to the univariate sample r1,j, …, rn,j, which
come from all the functions projected on the same realization vj(t). In
addition, let us define

di;j ¼ minfF̂nðri;jÞ; 1� F̂nðri;jÞg: (4)

Then, the RPD for any xiðtÞ 2 X is the mean of the univariate depths for
each function, which is expressed as

RPDðxiðtÞÞ ¼ 1
p

Xp

j¼1

di;j; i 2 f1;…; ng; (5)
3

where di,j is defined in (4). Note from (5) that the deepest function is the
deepest one on average in its univariate projections.

Another notion of depth was proposed in [12], which generalizes the
mode to the functional setting and is called the h-modal (hmode) depth.
This notion assigns larger depths to curves that have a larger number of
neighboring curves in the sample. To compute this depth, select a
bandwidth h and a kernel function defined on the real positive numbers.
Then, the hmode depth for a curve xiðtÞ 2 X is established as

Dh
nðxi; hÞ ¼

Xn

k¼1

Kðkxi � xkkÞ
h

; i 2 f1;…; ng; (6)

where k ⋅k is an appropriate norm for functions, such as the L2-norm, K is
an appropriate kernel (as the Gaussian kernel), and h is a tuning
parameter.

A J-th ordered integrated depth that can capture global features of the
sample was introduced in [43] by means of

DF
J ðxiðtÞ;PÞ ¼

Z
T
…

Z
T
Dððxiðt1Þ;…; xiðtJÞÞ>ÞPðXðt1Þ;…;XðtJ ÞÞ>dtJ⋯dt1;

i 2 f1;…; ng;
(7)

where P is a probability measure in the functional space, D is a depth
measure in a finite space of dimension J, and PðXðt1Þ;…;XðtJ ÞÞ> is the cor-

responding probability measure in that finite space associated with the
random vector ðXðt1Þ;…;XðtJÞÞ>. The depth of each function is the
average of the corresponding J-dimensional multivariate depths. In this
work, we fix J ¼ 2 and use the multivariate half-space depth proposed in
[61]. In order to estimate PðXðt1Þ;…;XðtJ ÞÞ> , we employ a plug-in estimate as

empirical measure. Connections from the J-th ordered depth to the
(J � 1)-th derivative of the data were stated in [43], which means that
the second ordered depth brings us information about the shape of the
curve (first derivative), whereas the third ordered depth provides infor-
mation related to the convexity of the curve (second derivative).

As mentioned, a homogeneity test was defined in [20] based on depth
to propose a distance measure between samples of functional data.
Specifically, let X and Y be the two samples that we want to test for
homogeneity. Denote by dX ðyÞ the depth of y in a sample X [ y, and
define by D X ðY Þ the function that maximizes dX ðyÞ for y 2 Y . Flores
et al. [20] proposed the statistics given by

P1ðX ;Y Þ ¼ dX D Y Y ;
P2ðX ;Y Þ ¼ P1ðX ;Y Þ � P1ðX ;X Þ;
P3ðX ;Y Þ ¼ dX D X Y ;
P4ðX ;Y Þ ¼ jP3ðX ;Y Þ � P1ðX ;X ÞjjP3ðX ;Y Þ � P1ðY ;Y Þj:

The idea behind P1 is that the functionD Y Y is the most representative
element ofY . Then, if its depth is large in X , it is most likely that X and
Y are in the same family, that is, they are homogeneous. The idea behind
P3 is that if the function of Y , most likely to come from the experiment
X , is very deep inX , then the two experiments are likely very mixed and
so both of them come from the same population. Note that P2 and P4 are
normalizations of P1 and P3. Hence, Flores et al. [20] used these statistics
and bootstrapping to test the null hypothesis of homogeneity. Specif-
ically, consider the functional samples X � fx1;…; xng and Y � fy1;…;

ymg, defined on the same interval T ⊂R. We assume that the functions lie
on C1(T), that is, the space of functions with continuous first derivatives.
Therefore, we wish to test the hypotheses established as H 0: X ¼L Y
versus H 1: X 6¼L Y ; where L means equality in law. Next, we propose
tests that have high power in many deviations from H 0, while main-
taining an appropriate size.
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3. DD plots and their relation with homogeneity

In this section, we introduce the proposed test and state its relation to
the DD plot.

Let Z � X [Y be a combined sample. In addition, let us define
the DD plot of the combined sample as

DDðX ;Y ;Z Þ � fðDX ðzÞ;DY ðzÞÞ; z2Z g;

where D is an arbitrary measure in any of the sample spaces X or Y .
Then, DDðX ;Y ;Z Þ is a set of pairs of size jZ j ¼ nþ m.

Following this idea, since depths try to characterize the distributions
of samples, the DD plot between homogeneous samples must be similar
to the identity [35], that is, the scatter plot generated by the DD plot
should concentrate towards the identity line. Fig. 1 shows DD plots for
homogeneous and heterogeneous samples. The DD plot on the left of
Fig. 1 corresponds to homogeneous samples, where both samples follow
a N2(02�1, I2�2) distribution (bivariate normal), with 02�1 being the
2� 1 null vector and I2�2 being the 2� 2 identity matrix. The DD plot on
the right of Fig. 1 is associated with heterogeneous samples, where the
first sample is N2(02�1, I2�2) distributed, and the second sample is N2(μ,
Σ) distributed, with μ ¼ [0.5, 1.3] and

Σ ¼
�
1:5 0:3
0:3 1:5

�

Note that the depth function used in Fig. 1 is the simplicial depth [34].
The points in the homogeneous DD plot stay concentrated towards the (0,
0)-(1, 1) line, whereas in the heterogeneous case they do not.

The scenarios in Fig. 1 display, with two artificial examples, the main
idea of the test. Note that, in the first scenario, we consider two bivariate
standard normal distributions and the DD plot is quite concentrated
around the diagonal line. However, in the second scenario, we also
consider two bivariate normals, but one of them with a weak correlation
structure and a different mean. This aspect of the increase in correlation,
even the increase in the marginal variances, highly distorts the DD plot,
that is, its points are not concentrated on the diagonal line. The reason for
the triangular shape is really unknown to us. The aspects that affect the
DD plot could be differences in the marginal distributions, differences in
location and scale parameters, or different dependency structure, among
others, as shown in the simulation examples. Nevertheless, note that the
proposed test does not consider how a DD plot deviates from the con-
centration of points on the diagonal line but whether it deviates or not
from such a line. Capturing the way how the DD plots deviate from the
diagonal line is indeed an ideal test statistic for homogeneity, which will
be studied in a future investigation following the ideas indicated in the
final section of the present work. Observe that our proposed test contrasts
whether the points of the DD plot are concentrated around the diagonal
line or not.

We use the proposed relationship presented in [35] between homo-
geneity and the DD plot to propose some statistics that can capture how
concentrated the DD plot is towards the diagonal line that passes from (0,
0) to (1, 1).
Fig. 1. DD plots for (left) homogeneous and

4

Note that if two multivariate distributions are the same, then the DD
plot is simply a segment on the 45� line from (0, 0) [33]. Inspired by this
idea, here, we propose to employ a linear model with β0¼ 0 and β1¼ 1 to
test, under the null hypothesis, that both samples come from the same
distribution.

It is worth noting that the DD plot can be constructed utilizing any
notion of depth, so that we must consider many depths to see which of
them provides us with higher power for our test. To detect if the DD plot
is concentrated towards the line passing through (0, 0)-(1, 1), we assume

DX ;i ¼ β0 þ β1DY ;i þ ui; i ¼ 1;…; nþ m; (8)

with ui being the usual error term in a regression model. Consider the null
hypothesisH 0: X ¼L Y to be true, which also means that DX ¼ DY . By
employing the formula for finding β1 given in (8), and noting that
CovðDX ;DY Þ ¼ CovðDX ;DX Þ ¼ VarðDX Þ; under the null hypothesis, we
get

β1 ¼
CovðDX ;DY Þ

VarðDX Þ ¼ VarðDX Þ
VarðDX Þ ¼ 1: (9)

Hence, by using the formula for β0, we obtain that β0 ¼ EðDX Þ �
β1EðDY Þ ¼ EðDX Þ � EðDX Þ ¼ 0: This means that we should test whether
β1 ¼ 1 and β0 ¼ 0. However, our model must be symmetric, such that the
test is invariant when DX is the independent or dependent variable.
Then, from (8), let

DY ;i ¼ β0 þ β1DX ;i þ ui; i ¼ 1;…; nþ m; (10)

be the model with different independent variables. Thus, from (9) and
(10) and with the formulas for β1 and β0 above stated, we reach

β1 ¼ CovðDY ;DX Þ
VarðDY Þ ¼ VarðDY Þ

VarðDY Þ ¼ 1; (11)

β0 ¼ EðDY Þ � β1EðDX Þ ¼ EðDY Þ � EðDY Þ ¼ 0: (12)

Therefore, from (11) and (12), we should test that β1 ¼ 1 and β0 ¼ 0 as a
novel approach for homogeneity based on DD plots. Consequently, we
must now propose a statistic to test the corresponding hypotheses. Since
the values of DX ;i and DY ;i do not necessarily follow a normal distribu-
tion, using the traditional t-test is not reasonable as the normality
assumption of ui could not hold. Then, we employ bootstrapping-t, which
has second-order convergence properties [15], to propose a test that
contrasts whether θ ¼ θ0 or not.

Suppose that, with the sample X , we can estimate θ̂ and its standard
error, namely σ̂. By utilizing the Wald test, we consider the statistic
defined as

T ¼ θ̂ � θ0
σ̂

: (13)

We approximate the distribution of T defined in (13) as follows. First,
(right) heterogeneous multivariate data.



Table 1
Simulation scenarios.

Scenario X Y Deviation

μ ϵi,j μ ϵi,j

1 μ1(ti) ei,j μ1(ti) ei,j none (size)
2 μ1(ti) ei,j μ1(ti) þ 0.25 ei,j mean
3 μ1(ti) ei,j μ1(ti) þ 0.5 ei,j mean
4 μ1(ti) ei,j μ1(ti) þ 0.75 ei,j mean
5 μ1(ti) ei,j μ1(ti) þ 1 ei,j mean
6 μ1(ti) ei,j μ1(ti) 2ei,j variance
7 μ1(ti) ei,j μ1(ti) 4ei,j variance
8 μ1(ti) ei,j μ1(ti) 0.5ei,j variance
9 μ1(ti) ei,j μ1(ti) 0.25ei,j variance
10 μ1(ti) ei,j μ1(ti) hi,j covariance
11 μ1(ti) ei,j μ2(ti) hi,j covariance and shape
12 μ1(ti) ei,j μ2(ti) ei,j shape
13 μ3(ti) þ ti ei,j μ3ðtiÞþ 2t3i ei,j partial shape
14 μ3(ti) þ ti ei,j μ3ðtiÞþ 4t3i ei,j partial shape
15 μ3(ti) f ð0Þi;j

μ3(ti) f ð8Þi;j
skewness

16 μ3(ti) f ð0Þi;j
μ3(ti) f ð9Þi;j

skewness
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draw bootstrap samples under H 0 from X . Second, call them X *, which

yields θ̂
*
and σ̂*. Hence, estimate T by the bootstrap replicates as T* ¼

ðθ̂* � θ0Þ=σ̂*: By employing bootstrapping-t, we contrast whether β0 ¼ 0
and β1 ¼ 1 for the DD plot while resampling the original curves. Thus,
compute DDðX ;Y ;Z Þ and get the least square (LS) estimates of the
parameters stated in (8): β̂1 and β̂0. In addition, compute the standard
error of the estimators for these parameters given by

σ̂β0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnþm

i¼1
û2i
Xnþm

i¼1
DY ;i

ðnþ m� 2Þ
Xnþm

i¼1
ðDY ;i � DY Þ

vuut ; (14)

σ̂β1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnþm

i¼1
û2i

ðnþ m� 2Þ
Xnþm

i¼1
ðDY ;i � DY Þ

vuut ; (15)

where ûi defined in (14) and (15) are the residuals when fitting the
expression stated in (8) with the LS method and DY is the mean of the
DY ;i. Now, we use the statistic defined in (13) to compute

T0 ¼ β̂0
σ̂β0

; T1 ¼ β̂1 � 1
σ̂β1

; (16)

which are the test statistics. Then, since H 0: X ¼L Y , we can resample
Z as the null hypothesis states that the same model generated both data
samples. This allows us to resample the sets of curves, which is equivalent
to resampling each of them individually, under H 0.

Let us call the new sample with replacement as Z *. Then, compute

the points DDðX ;Y ;Z *Þ and utilize them to obtain T*ðiÞ
0 and T*ðiÞ

1 as in
(16), for i 2 {1, …, B} bootstrap replicates of each test statistic. Now,
establish the p-values of the test as

p0 ¼ 2min

(
1
B

XB
i¼1

IIðT*ðiÞ
0 > T0Þ; 1B

XB
i¼1

IIðT*ðiÞ
0 < T0Þ

)
; (17)

p1 ¼ 2min

(
1
B

XB
i¼1

IIðT*ðiÞ
1 > T1Þ; 1B

XB
i¼1

IIðT*ðiÞ
1 < T1Þ

)
; (18)

where II is the indicator function. We reject H 0 for an appropriate level
of α (for example, α¼ 0.05). Since we have two p-values, we need to use a
sequentially rejective multiple test to ensure a size α overall in our test.
Employing the Holm-Bonferroni method proposed in [30], we order p0
and p1 defined in (17) and (18) increasingly. Let p[1] be the minimal
p-value between p0 and p1, and p[2] the maximal p-value between p0 and
p1. Therefore, reject H 0 if p[1] < α/2 or p[2] < α, and do not reject H 0,
otherwise. The adjusted p-value of the test is then p ¼ min{2p[1], p[2]}.

4. Simulation studies

This section reports the empirical power and size of the tests proposed
in this work as well as the corresponding values for the test proposed by
Flores et al. [20]. For conciseness, from now on, we refer to it as the
Flores test, using P4 with the FM depth, since power-wise is its best
performer [20]. The other tests considered to compare our DD plot-based
tests utilize different depth measures.

The simulations and methods mentioned in this work were imple-
mented on R language [50] and the code is available from the authors
upon request. We use the R packages named: (i) ddalpha [48] and
fda.usc [18] for computing the different functional depths; (ii) fda

[54] for handling functional data objects; (iii) EMMIXskew [66] for
generating multivariate t-skewed distributed data; and (iv) ggplot2

[68] and tidyfun [58] for producing the graphs contained in this work.
We rely our simulation procedure on the works presented in [22,49],

where different data generating models are proposed, but we also add
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other essential scenarios.Wefix a generatormodel and select others based
on different deviations from H 0. We determine the proportion of re-
jections of H 0 when the same model generates both samples for
measuring the test size, whereas for measuring its power, we compute the
proportion of rejections of H 0 when different models generate each data
sample.

We consider 16 different models (scenarios) according to changes in
mean, variance, covariance structure, shape, and skewness; which are
defined in Table 1. This table summarizes the choices for the mean μ(t)
and the multivariate process generating the error term ϵi,j, where the
deviation column describes which type of deviation from H 0 is tested, or
if we are determining the probability of type-I error. From the first sce-
nario, we state the size, and from the considered deviations from H 0, we
establish the power. The size of the test should be near to the chosen
significance level, and the power should be as high as possible. Fig. 2
shows the DD plots for all the different departures from the null hy-
pothesis represented in Table 1. All the lines in these DD plots have some
differences to the line passing through (0, 0)-(1, 1): some have β1 6¼ 1 and
others have β0 6¼ 0.

For this simulation, we propose discretized models according to

xi;jðtiÞ ¼ αμðtiÞ þ δþ βϵi;j; (19)

where μ(ti) is the mean function of the process x(t) evaluated at a point ti;
δ, α, β > 0 are scalars; and ϵi,j is generated according to a zero-mean
multivariate distribution in the discretized grid. We choose 30 equidis-
tant points from the interval [0, 1], resulting in the generated grid. The
model given in (19) can be expressed in a functional form
as x(t) ¼ αμ(t) þ δ þ βγ(t, s), and μ(t) may take forms such as (i)
μ1(t) ¼ 30t3/2(1 � t); (ii) μ2(t) ¼ 30t(1 � t)2; and (iii) μ3ðtÞ ¼ffiffiffi
2

p
ξ1sinð2πtÞþ

ffiffiffi
2

p
ξ2cosð2πtÞ, where ξ1 ~N(0, 10) and ξ2 ~N(0, 5).

To generate ϵi,j stated in (19), we consider one of the following three
processes: (i) a multivariate normal distribution with covariance matrix
0.3 exp(�(|ti � tj|)/0.3), denoted by ei,j; (ii) a multivariate normal dis-
tribution with covariance matrix 0.5 exp(�(|ti � tj|)/0.2), denoted by hi,j;
and (iii) following [67], a multivariate skew-t distribution with 4 degrees
of freedom, a vector of k constant skew parameters and the same

covariance matrix as ei,j, denoted by f ðkÞi;j .
In Tables 2–4, we can see the empirical powers when the sample sizes

are 25, 50, and 150, respectively. In each of these tables, scenario 1 refers
to size simulations, while scenarios 2–16 refer to power simulations. For
all sample sizes, in general, the DD plot-based test, using DF

2 (FD2) stated
in (7), has very high power. For changes in the magnitude of the mean,
the FM and Flores tests tend to have higher power than the other tests in
all sample sizes. For changes variance/covariance, the Flores test has low



Fig. 2. DD plots for the simulation scenarios described in Table 1, when both samples have 125 curves. We use the FD2 depth to compute the DD plots. The blue lines
correspond to the OLS fitted line to the points. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)

Table 2
Empirical power and size of the indicated test for the listed scenario according to
Table 1 based on simulations with samples of size 25.

Scenario Flores FM hmode RPD RTD FD2 ABD

1 0.11 0.02 0.00 0.01 0.00 0.01 0.00
2 0.47 0.09 0.00 0.07 0.03 0.02 0.00
3 0.99 0.87 0.03 0.74 0.08 0.52 0.18
4 1.00 1.00 0.31 1.00 0.14 0.99 0.86
5 1.00 1.00 0.76 1.00 0.27 1.00 1.00
6 0.14 0.78 0.75 0.74 0.79 0.97 0.99
7 0.43 0.90 0.59 0.87 0.99 1.00 0.95
8 0.02 1.00 0.99 0.89 0.94 1.00 1.00
9 0.03 1.00 1.00 1.00 1.00 1.00 1.00
10 0.07 0.24 0.48 0.18 0.21 0.55 0.76
11 0.54 1.00 1.00 1.00 0.14 1.00 1.00
12 0.61 1.00 1.00 1.00 0.16 1.00 1.00
13 0.29 0.15 0.78 0.54 0.62 0.22 1.00
14 0.35 0.66 1.00 0.99 0.68 0.75 1.00
15 0.96 0.57 0.03 0.57 0.52 0.75 0.99
16 0.94 0.58 0.01 0.70 0.60 0.87 1.00

Table 3
Empirical power and size of the indicated test for the listed scenario according to
Table 1 based on simulations with samples of size 50.

Scenario Flores FM hmode RPD RTD FD2 ABD

1 0.04 0.05 0.08 0.01 0.03 0.02 0.00
2 0.56 0.43 0.00 0.00 0.00 0.18 0.03
3 0.99 1.00 0.41 0.90 0.15 0.99 0.67
4 1.00 1.00 0.55 1.00 0.66 1.00 1.00
5 1.00 1.00 0.91 1.00 0.93 1.00 1.00
6 0.11 0.91 0.67 0.92 1.00 1.00 1.00
7 0.44 0.97 0.20 0.98 1.00 1.00 1.00
8 0.02 1.00 1.00 1.00 1.00 1.00 1.00
9 0.06 1.00 1.00 1.00 1.00 1.00 1.00
10 0.05 0.60 0.69 0.26 0.61 0.86 0.99
11 0.92 1.00 1.00 1.00 0.90 1.00 1.00
12 0.89 1.00 1.00 1.00 0.92 1.00 1.00
13 0.33 0.24 0.96 0.78 0.96 0.94 1.00
14 0.53 0.79 1.00 1.00 1.00 1.00 1.00
15 0.97 0.71 0.00 0.88 0.90 0.98 1.00
16 0.99 0.89 0.00 0.97 0.93 0.99 1.00
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power, but in these cases, the DD plot-based tests with FD2 and ABD have
high powers. For changes in asymmetry of the data, the ABD DD plot-
based test has high power across different sample sizes. The higher
power of the Flores test as mean changes is explained by the deepest
curves in a sample and by some statistics with relation to those curves.
Nevertheless, the deepest curve in a sample is highly related to the center
or the mean of the process. In that sense, the Flores test is like a mean test
for functional data. This is the reason why it does not perform well when
6

the changes between samples are not related to the mean of the stochastic
processes that originated the curves.

In general, all methods presented acceptable empirical probabilities
of type-I error, with most being less than the chosen significance level
α ¼ 0.05. It is clear that our tests are overall more powerful than the
Flores test. However, as mentioned, there is a more recent test in the
literature, which was introduced in [22]. Fig. 6 graphically compares the
empirical powers for our tests and the tests presented in [22], named the



Table 4
Empirical power and size of the indicated test for the listed scenario according to
Table 1 based on simulations with samples of size 150.

Scenario Flores FM hmode RPD RTD FD2 ABD

1 0.04 0.00 0.03 0.01 0.03 0.07 0.01
2 0.83 0.91 0.00 0.08 0.05 0.79 1.00
3 1.00 1.00 0.06 0.99 0.66 1.00 1.00
4 1.00 1.00 0.82 1.00 0.99 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 0.15 0.99 0.66 1.00 1.00 1.00 1.00
7 0.59 0.98 0.02 1.00 1.00 1.00 1.00
8 0.02 1.00 1.00 1.00 1.00 1.00 1.00
9 0.06 1.00 1.00 1.00 1.00 1.00 1.00
10 0.00 0.94 0.95 0.39 1.00 1.00 1.00
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 1.00 1.00 1.00 1.00 1.00 1.00 0.11
13 0.67 0.81 1.00 0.84 1.00 1.00 1.00
14 0.81 1.00 1.00 1.00 1.00 1.00 1.00
15 1.00 1.00 0.00 1.00 1.00 1.00 1.00
16 1.00 1.00 0.00 1.00 1.00 1.00 1.00 Fig. 4. Boxplots of the empirical powers based on the simulation scenario

described in Table 1, when both samples have 50 curves. Points in red are
outliers. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 5. Boxplots of the empirical powers based on the simulation scenario
described in Table 1, when both samples have 150 curves. Points in red are
outliers. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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EM and MEM tests, using the same simulation scenarios considered in
[22]. Observe that our tests based on FD2 and ABD are also better, as they
have larger medians than the other tests. The short whiskers of the
boxplots for the DD plot-based tests indicate that they are stable and do
not vary significantly, while the EM and MEM tests have considerable
variability. We conclude that the DD plot-based tests are more powerful
than the approaches proposed in [22].

The boxplots for the empirical power of all scenarios considered in
Table 1, with varying sample sizes, are displayed in Figs. 3–5. From these
boxplots, note that the tests tend to be more powerful for larger sample
sizes, as expected. Observe from these figures that, when both samples
sizes are 25, the DD plot-based tests with ABD and FD2, in general,
perform well, since that they have median powers near to one. When
both sample sizes are 50 or 150, the DD plot-based tests with ABD and
FD2 have large medians and are, overall, the most powerful. Neverthe-
less, the DD plot-based test, with hmode stated in (6), does not perform
well so that it is not recommended.

5. Application with real chemical data

In this section, we consider four functional chemical data sets. They
consist of two heterogeneous groups so that our tests should reject the
null hypothesis that they are homogeneous.

The first data set consists of spectrometric curves for chopped pieces
of meat, which correspond to the absorbance measured at 100 different
Fig. 3. Boxplots of the empirical powers based on the simulation scenario
described in Table 1, when both samples have 25 curves. Points in red are
outliers. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 6. Boxplots of the empirical powers of the DD plot with different depth
measures compared to the EM and MEM tests for samples of 50 curves. Points in
red are outliers. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 7. Tecator spectrometry data with green for low-fat meat and red for high-
fat meat. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 9. Curves for NOx levels in Poblenou (Barcelona, Spain) with green for
work and red for non-work days. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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wavelengths [19]. We can divide these meats into two groups: the pieces
with (i) small and (ii) large fat percentages (where small is less than 20%
fat). The curves are in Fig. 7, whereas the DD plots using different depths
of these samples are in Fig. 8. The points do not pass through the diagonal
line.

The second data set corresponds to nitrogen oxide (NOx) emission
levels in a control station in Poblenou, Barcelona, Spain [17]. The station
measures NOx levels in μg/m3 every hour, every day. The curves are split
into two groups: (i) working days and (ii) non-working days, which are in
Fig. 9, and their respective DD plots using various depths are in Fig. 10.
Once again, we can see that the points do not concentrate toward the line.

The third data set is associated with mitochondrial calcium overload
(MCO) [57]. During ischemic myocardia, high levels of MCO relate to
better protection against ischemia. Then, it is interesting to see if some
drugs can raise MCO levels in mouses. This data set consists once again of
two groups: (i) one which receives no drug –control group– and (ii)
another group that receives a drug –treated group– that can raise MCO
levels. Every 10 s, MCO levels are measured. In Fig. 11, we can see both
samples, whereas the DD plots of these samples are in Fig. 12. The points
do not concentrate on the line neither.

The four set is related to Berkeley growth data, which contains the
heights of 39 boys and 54 girls from ages 1 to 18. It is well known that
growth dynamics differ from boys to girls, so that our test should reject
the null hypothesis of homogeneity. We can see the curves in Fig. 13,
whereas Fig. 14 shows the DD plots obtained from these two samples
using different depths. Note the behavior typical of heterogeneous
samples, that is, they are do not concentrate on the (0, 0)-(1, 1) diagonal
line.

Performing a visual check for homogeneity using the DD plots is not
satisfactory enough because we do not get essential metrics like the p-
value. Then, we employ the tests proposed in this paper to obtain the
results reported in Table 5. The FD2 DD plot-based test and the NEM test
[22] were the only tests able to reject H 0 in all the cases, getting near
zero p-values. The Flores test is only able to reject H 0 half the times. The
Fig. 8. DD plots for spectrometric curves of low and high fat contain
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Flores and FM DD plot-based tests are able to reject H 0 in two cases,
while not rejecting in one case. The RPD and ABD DD plot-based tests are
able to reject three of the four cases correctly.

6. Conclusions, discussion and future research

In this article, we proposed a two-sample test for functional data
utilizing DD plots. We adapted the idea proposed in [35] to link multi-
variate DD plots and homogeneity to a functional setting. Then, we
formalized these notions into a test that considered a linear model for the
DD plot, contrasted two linear hypotheses that relate to homogeneity
between samples, used bootstraping-t to approximate the null distribu-
tion of the test statistic, and handled the multiple hypotheses employing
the Holm-Bonferroni method. In summary, this paper reported the
following findings:

(i) This proposal compared depth measures (or any other measure
which takes a curve and returns a real number) between two
samples, making it robust in many scenarios, being this the
advantage of our method. Other tests, as one proposed in [20],
compare only the most representative data between samples. Our
tests also employed bootstrap-t procedures that are second-order
accurate, better than the usual bootstrap confidence intervals,
which are only first-order accurate.

(ii) We compared performance through simulation of our tests and
other tests, with different sizes in both samples. Our test achieved
a desirable empirical size, whereas the empirical power was
greater than the corresponding power of other tests found in the
literature. In particular, our proposed test had a good power when
the departures from the null hypothesis are in variance/covari-
ance structure, in shape, or asymmetry, while also achieving suf-
ficient power when the difference between samples is in the mean
magnitude.

(iii) In particular, the DD plot-based tests with FD2 and ABD tended to
work well in all the different scenarios. However, the ABD DD
plot-based test tended to be computationally heavy, so that we
recommend to use it only for small sample sizes, where it had
ing meats using (left) FM, (center) RPD, and (right) FD2 depths.



Fig. 10. DD plots for the NOx curves in Poblenou (Barcelona, Spain) for work and non-work days using (left) FM, (center) RPD, and (right) FD2 depths.

Fig. 11. Curves for MCO levels in mouses' cardiac cells for one curve as control
group in red and the other in green receives a treatment. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 13. Berkeley growth data with green for males and red for females. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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better power performance than the other tests. When we have
medium or large samples, we should employ the FD2 DD plot-
based test. This depth is quite powerful as it can detect differ-
ences not only on the samples of the curves themselves but also on
their derivatives, as stated in [43]. The FD2 DD plot-based test
worked well in a high variety of scenarios, having in general
greater power than some other recents tests found in the litera-
ture. The hmode DD plot-based test did not perform well in
different scenarios, so that its use is not recommended. We believe
that this depth is not able to reflect all the different aspects of a
sample, only concentrating in the mode.

(iv) The results of our tests in the four real chemical data sets analyzed
were also satisfactory. In every set, the FD2 test could detect
heterogeneity between real-world samples from different pop-
ulations. Other recent tests could not do that, so this is another
indicator that the FD2 DD plot-based test is powerful.

Thus, our study can be a knowledge addition to the tool-kit of diverse
practitioners, including chemical engineers, chemists, applied statisti-
cians, and data scientists.

The source of the performance difference between the Flores test and
our test can be explained by the fact that the Flores test uses only the
depths of the deepest curves in the samples, while we employ the depths
of all the curves in the sample.
Fig. 12. DD plots for the MCO curves in the mouse's cardiac cells for control
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Some themes for future research, which arose from the present
investigation, are the following:

(i) We can change the bootstrapping-t for another resampling
method.

(ii) We could also propose a nonparametric version of the F-statistic
utilized for multiple lineal hypothesis testing.

(iii) We might implement different depth measures that were not
considered here, like in [44], to assess their empirical power.

(iv) We could consider other simulation scenarios. For example, can
our test detect heterogeneity when the samples have the same
means and covariance operators but have different kurtosis? Some
kurtosis measures for FDA were proposed in [64]. We can create
new simulation scenarios based on them.

(v) The test proposed in this work might be extended to more than
two populations, as well as to design a robust version of this test by
implementing in equation (8) the technique studied in [63].

(vi) The proposed test does not consider how the points of a DD plot
concentrate on the diagonal line but whether they deviate or not
from such a line. To contrast how concentrated this plot is around
the diagonal line, it is indeed an ideal test statistic for homogeneity.
Until now, we do not know how to improve our test in this sense,
but an idea that could be helpful is based on the connection among
goodness-of-fit tests and graphical methods as proposed in [5,6].
and treated groups using (left) FM, (center) RPD, and (right) FD2 depths.



Fig. 14. DD plots for the height curves of boys and girls using (left) FM, (center) RPD, and (right) FD2 depths.

Table 5
Result of the indicated test in the listed data set, where ✓means that the test was able to reject H 0 and � means that it does not reject H 0 at 5% of significance.

Data set Flores FM p-value RPD p-value FD2 p-value NEM p-value ABD p-value

Tecator ✓ ✓ 0.034 ✓ 0.046 ✓ < 0.001 ✓ 0.006 � 0.432
MCO ✓ � 0.072 ✓ 0.017 ✓ < 0.001 ✓ 0.009 ✓ < 0.001
NOx � ✓ 0.032 ✓ 0.028 ✓ < 0.001 ✓ < 0.001 ✓ < 0.001
Heights � � 0.324 � 0.268 ✓ < 0.001 ✓ < 0.001 � 0.236
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(vii) The statistic proposed in the present study assesses whether two
samples differ in some characteristics of the distributions that are
generating the functional data and not just in one specific char-
acteristic. The deficiency of the statistics proposed in the literature
till the date against our statistic is that the proposed statistic
considers any kind of heterogeneity between the two samples used
for testing, while other statistics consider a more specific hetero-
geneity (in location or in scale). Our statistic, such as it was pro-
posed, is not designed to identify differences between any specific
parameter of the two functional distributions to be tested but
whether both functional samples come from the same functional
distribution or not. Therefore, the proposed statistic does not
identify what parameters produce this difference. While a general
purpose test is helpful in a broad range of settings, once the hy-
pothesis of homogeneity is rejected, it is natural to ask us in what
way the two functional distributions differ. The shape of a DD plot
could have some information to offer regarding the nature of the
difference. This is the reason for considering various rationales in
the existing DD plot-based test statistics in a multivariate setting.
Therefore, identifying in what functional parameter(s) the distri-
butions are differing based on the test proposed here is an inter-
esting aspect to be explored in a future investigation.

The proposed tests in this study promote new challenges and offer
open issues to be analyzed. Research on these and other issues are in
progress and their findings will be reported in future articles.
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